コード例 #1
0
// Send implements the batch.Sender interface. If the request is part of a
// transaction, the TxnCoordSender adds the transaction to a map of active
// transactions and begins heartbeating it. Every subsequent request for the
// same transaction updates the lastUpdate timestamp to prevent live
// transactions from being considered abandoned and garbage collected.
// Read/write mutating requests have their key or key range added to the
// transaction's interval tree of key ranges for eventual cleanup via resolved
// write intents; they're tagged to an outgoing EndTransaction request, with
// the receiving replica in charge of resolving them.
func (tc *TxnCoordSender) Send(ctx context.Context, ba roachpb.BatchRequest) (*roachpb.BatchResponse, *roachpb.Error) {
	if err := tc.maybeBeginTxn(&ba); err != nil {
		return nil, roachpb.NewError(err)
	}
	var startNS int64
	ba.SetNewRequest()

	// This is the earliest point at which the request has an ID (if
	// applicable). Begin a Trace which follows this request.
	sp := tc.tracer.StartTrace(ba.TraceID())
	defer sp.Finish()
	sp.LogEvent("sending batch")
	ctx, _ = opentracing.ContextWithSpan(ctx, sp)

	var id string // optional transaction ID
	if ba.Txn != nil {
		// If this request is part of a transaction...
		id = string(ba.Txn.ID)
		// Verify that if this Transaction is not read-only, we have it on
		// file. If not, refuse writes - the client must have issued a write on
		// another coordinator previously.
		if ba.Txn.Writing && ba.IsTransactionWrite() {
			tc.Lock()
			_, ok := tc.txns[id]
			tc.Unlock()
			if !ok {
				return nil, roachpb.NewErrorf("transaction must not write on multiple coordinators")
			}
		}

		// Set the timestamp to the original timestamp for read-only
		// commands and to the transaction timestamp for read/write
		// commands.
		if ba.IsReadOnly() {
			ba.Timestamp = ba.Txn.OrigTimestamp
		} else {
			ba.Timestamp = ba.Txn.Timestamp
		}

		if rArgs, ok := ba.GetArg(roachpb.EndTransaction); ok {
			et := rArgs.(*roachpb.EndTransactionRequest)
			if len(et.Key) != 0 {
				return nil, roachpb.NewErrorf("EndTransaction must not have a Key set")
			}
			et.Key = ba.Txn.Key
			// Remember when EndTransaction started in case we want to
			// be linearizable.
			startNS = tc.clock.PhysicalNow()
			if len(et.IntentSpans) > 0 {
				// TODO(tschottdorf): it may be useful to allow this later.
				// That would be part of a possible plan to allow txns which
				// write on multiple coordinators.
				return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction")
			}
			tc.Lock()
			txnMeta, metaOK := tc.txns[id]
			if id != "" && metaOK {
				et.IntentSpans = txnMeta.intentSpans()
			}
			tc.Unlock()

			if intentSpans := ba.GetIntentSpans(); len(intentSpans) > 0 {
				// Writes in Batch, so EndTransaction is fine. Should add
				// outstanding intents to EndTransaction, though.
				// TODO(tschottdorf): possible issues when the batch fails,
				// but the intents have been added anyways.
				// TODO(tschottdorf): some of these intents may be covered
				// by others, for example {[a,b), a}). This can lead to
				// some extra requests when those are non-local to the txn
				// record. But it doesn't seem worth optimizing now.
				et.IntentSpans = append(et.IntentSpans, intentSpans...)
			} else if !metaOK {
				// If we don't have the transaction, then this must be a retry
				// by the client. We can no longer reconstruct a correct
				// request so we must fail.
				//
				// TODO(bdarnell): if we had a GetTransactionStatus API then
				// we could lookup the transaction and return either nil or
				// TransactionAbortedError instead of this ambivalent error.
				return nil, roachpb.NewErrorf("transaction is already committed or aborted")
			}
			if len(et.IntentSpans) == 0 {
				// If there aren't any intents, then there's factually no
				// transaction to end. Read-only txns have all of their state in
				// the client.
				return nil, roachpb.NewErrorf("cannot commit a read-only transaction")
			}
			if log.V(1) {
				for _, intent := range et.IntentSpans {
					sp.LogEvent(fmt.Sprintf("intent: [%s,%s)", intent.Key, intent.EndKey))
				}
			}
		}
	}

	// Send the command through wrapped sender, taking appropriate measures
	// on error.
	var br *roachpb.BatchResponse
	{
		var pErr *roachpb.Error
		br, pErr = tc.wrapped.Send(ctx, ba)

		if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok {
			br, pErr = tc.resendWithTxn(ba)
		}

		if pErr = tc.updateState(ctx, ba, br, pErr); pErr != nil {
			sp.LogEvent(fmt.Sprintf("error: %s", pErr))
			return nil, pErr
		}
	}

	if br.Txn == nil {
		return br, nil
	}

	if _, ok := ba.GetArg(roachpb.EndTransaction); !ok {
		return br, nil
	}
	// If the --linearizable flag is set, we want to make sure that
	// all the clocks in the system are past the commit timestamp
	// of the transaction. This is guaranteed if either
	// - the commit timestamp is MaxOffset behind startNS
	// - MaxOffset ns were spent in this function
	// when returning to the client. Below we choose the option
	// that involves less waiting, which is likely the first one
	// unless a transaction commits with an odd timestamp.
	if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS {
		startNS = tsNS
	}
	sleepNS := tc.clock.MaxOffset() -
		time.Duration(tc.clock.PhysicalNow()-startNS)
	if tc.linearizable && sleepNS > 0 {
		defer func() {
			if log.V(1) {
				log.Infof("%v: waiting %s on EndTransaction for linearizability", br.Txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond))
			}
			time.Sleep(sleepNS)
		}()
	}
	if br.Txn.Status != roachpb.PENDING {
		tc.cleanupTxn(sp, *br.Txn)
	}
	return br, nil
}