func TestLinprog(t *testing.T) { m := 500 n := 1000 tol := 1e-8 A := mat.RandN(m, n) c := mat.RandVec(n) b := mat.NewVec(m) xt := mat.RandVec(n) b.Apply(A, xt) At := A.TrView() rd := mat.NewVec(n) rp := mat.NewVec(m) rs := mat.NewVec(n) prob := NewStandard(c, A, b) //Example for printing duality gap and infeasibilities result := Solve(prob, nil, NewDisplay(2)) rd.Sub(c, result.S) rd.AddMul(At, result.Y, -1) rp.Apply(A, result.X) rp.Sub(b, rp) rs.Mul(result.X, result.S) rs.Neg(rs) dev := (rd.Asum() + rp.Asum() + rs.Asum()) / float64(n) if dev > tol { t.Log(dev) t.Fail() } }
func TestSolve(t *testing.T) { mat.Register(cops) xInit := mat.RandVec(10).Scal(10.0) sol := NewSolution(xInit) result := Solve(opt.Rosenbrock{}, sol, nil, NewDisplay(10)) t.Log(result.Status, result.ObjX, result.Iter) if math.Abs(result.ObjX) > 0.1 { t.Fail() } params := NewParams() params.IterMax = 100000 result = SolveGradProjected(opt.Rosenbrock{}, opt.RealPlus{}, sol, params, NewDisplay(1000)) t.Log(result.Status, result.ObjX, result.Iter) params.XTolAbs = 1e-9 params.XTolRel = 0 params.FunTolRel = 0 params.FunTolAbs = 0 params.FunEvalMax = 100000 result = Solve(rb{}, sol, params, NewDisplay(1)) t.Log(result.Status, result.ObjX, result.Iter, result.X) xInit = mat.Vec{0, 3} sol.SetX(xInit, false) result = Solve(rosTest{}, sol, params, NewDisplay(1)) t.Log(result.Status, result.ObjX, result.Iter) }
func TestRosenbrock(t *testing.T) { mat.Register(cops) n := 10 scale := 10.0 xInit := mat.RandVec(n).Scal(scale) //Define input arguments obj := opt.Rosenbrock{} p := NewParams() p.FunEvalMax = 100000 p.IterMax = 100000 sol := NewSolution(xInit) //Steepest descent with armijo stDesc := NewSteepestDescent() res1 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res1.ObjX, res1.FunEvals, res1.GradEvals, res1.Status) //Steepest descent with Quadratic stDesc.LineSearch = uni.DerivWrapper{uni.NewQuadratic()} res2 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res2.ObjX, res2.FunEvals, res2.GradEvals, res2.Status) //LBFGS with armijo lbfgs := NewLBFGS() res3 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res3.ObjX, res3.FunEvals, res3.GradEvals, res3.Status) //LBFGS with Quadratic lbfgs.LineSearch = uni.DerivWrapper{uni.NewQuadratic()} res4 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res4.ObjX, res4.FunEvals, res4.GradEvals, res4.Status) //LBFGS with Cubic lbfgs.LineSearch = uni.NewCubic() res5 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res5.ObjX, res5.FunEvals, res5.GradEvals, res5.Status) if math.Abs(res1.ObjX) > 0.01 { t.Fail() } if math.Abs(res2.ObjX) > 0.01 { t.Fail() } if math.Abs(res3.ObjX) > 0.01 { t.Fail() } if math.Abs(res4.ObjX) > 0.01 { t.Fail() } if math.Abs(res5.ObjX) > 0.01 { t.Fail() } }
func BenchmarkLinprog(bench *testing.B) { bench.StopTimer() m := 50 n := 100 tol := 1e-3 rd := mat.NewVec(n) rp := mat.NewVec(m) rs := mat.NewVec(n) for i := 0; i < bench.N; i++ { A := mat.RandN(m, n) c := mat.RandVec(n) b := mat.NewVec(m) xt := mat.RandVec(n) b.Apply(A, xt) At := A.TrView() prob := NewStandard(c, A, b) bench.StartTimer() result := Solve(prob, nil) bench.StopTimer() rd.Sub(c, result.S) rd.AddMul(At, result.Y, -1) rp.Apply(A, result.X) rp.Sub(b, rp) rs.Mul(result.X, result.S) rs.Neg(rs) dev := (rd.Asum() + rp.Asum() + rs.Asum()) / float64(n) if dev > tol { bench.Log(dev) } } }