// makeTestState create a sample test state to test node-wise reconstruction. func makeTestState() (ethdb.Database, common.Hash, []*testAccount) { // Create an empty state db, _ := ethdb.NewMemDatabase() state, _ := New(common.Hash{}, db) // Fill it with some arbitrary data accounts := []*testAccount{} for i := byte(0); i < 96; i++ { obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i})) acc := &testAccount{address: common.BytesToAddress([]byte{i})} obj.AddBalance(big.NewInt(int64(11 * i))) acc.balance = big.NewInt(int64(11 * i)) obj.SetNonce(uint64(42 * i)) acc.nonce = uint64(42 * i) if i%3 == 0 { obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i}) acc.code = []byte{i, i, i, i, i} } state.updateStateObject(obj) accounts = append(accounts, acc) } root, _ := state.Commit() // Return the generated state return db, root, accounts }
func (self *StateDB) RawDump() Dump { dump := Dump{ Root: common.Bytes2Hex(self.trie.Root()), Accounts: make(map[string]DumpAccount), } it := self.trie.Iterator() for it.Next() { addr := self.trie.GetKey(it.Key) var data Account if err := rlp.DecodeBytes(it.Value, &data); err != nil { panic(err) } obj := newObject(nil, common.BytesToAddress(addr), data, nil) account := DumpAccount{ Balance: data.Balance.String(), Nonce: data.Nonce, Root: common.Bytes2Hex(data.Root[:]), CodeHash: common.Bytes2Hex(data.CodeHash), Code: common.Bytes2Hex(obj.Code(self.db)), Storage: make(map[string]string), } storageIt := obj.getTrie(self.db).Iterator() for storageIt.Next() { account.Storage[common.Bytes2Hex(self.trie.GetKey(storageIt.Key))] = common.Bytes2Hex(storageIt.Value) } dump.Accounts[common.Bytes2Hex(addr)] = account } return dump }
func mustConvertAddress(in string) common.Address { out, err := hex.DecodeString(strings.TrimPrefix(in, "0x")) if err != nil { panic(fmt.Errorf("invalid hex: %q", in)) } return common.BytesToAddress(out) }
func (k *Key) UnmarshalJSON(j []byte) (err error) { keyJSON := new(plainKeyJSON) err = json.Unmarshal(j, &keyJSON) if err != nil { return err } u := new(uuid.UUID) *u = uuid.Parse(keyJSON.Id) k.Id = *u addr, err := hex.DecodeString(keyJSON.Address) if err != nil { return err } privkey, err := hex.DecodeString(keyJSON.PrivateKey) if err != nil { return err } k.Address = common.BytesToAddress(addr) k.PrivateKey = ToECDSA(privkey) return nil }
// UnlockAccount asks the user agent for the user password and tries to unlock the account. // It will try 3 attempts before giving up. func (fe *RemoteFrontend) UnlockAccount(address []byte) bool { if !fe.enabled { return false } err := fe.send(AskPasswordMethod, common.Bytes2Hex(address)) if err != nil { glog.V(logger.Error).Infof("Unable to send password request to agent - %v\n", err) return false } passwdRes, err := fe.recv() if err != nil { glog.V(logger.Error).Infof("Unable to recv password response from agent - %v\n", err) return false } if passwd, ok := passwdRes.Result.(string); ok { err = fe.mgr.Unlock(common.BytesToAddress(address), passwd) } if err == nil { return true } glog.V(logger.Debug).Infoln("3 invalid account unlock attempts") return false }
func (self *testjethre) UnlockAccount(acc []byte) bool { err := self.expanse.AccountManager().Unlock(common.BytesToAddress(acc), "") if err != nil { panic("unable to unlock") } return true }
func TestMipmapUpgrade(t *testing.T) { db, _ := ethdb.NewMemDatabase() addr := common.BytesToAddress([]byte("jeff")) genesis := core.WriteGenesisBlockForTesting(db) chain, receipts := core.GenerateChain(nil, genesis, db, 10, func(i int, gen *core.BlockGen) { var receipts types.Receipts switch i { case 1: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{&vm.Log{Address: addr}} gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 2: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{&vm.Log{Address: addr}} gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} } // store the receipts err := core.WriteReceipts(db, receipts) if err != nil { t.Fatal(err) } }) for i, block := range chain { core.WriteBlock(db, block) if err := core.WriteCanonicalHash(db, block.Hash(), block.NumberU64()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := core.WriteHeadBlockHash(db, block.Hash()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := core.WriteBlockReceipts(db, block.Hash(), receipts[i]); err != nil { t.Fatal("error writing block receipts:", err) } } err := addMipmapBloomBins(db) if err != nil { t.Fatal(err) } bloom := core.GetMipmapBloom(db, 1, core.MIPMapLevels[0]) if (bloom == types.Bloom{}) { t.Error("got empty bloom filter") } data, _ := db.Get([]byte("setting-mipmap-version")) if len(data) == 0 { t.Error("setting-mipmap-version not written to database") } }
// Tests that transactions and associated metadata can be stored and retrieved. func TestTransactionStorage(t *testing.T) { db, _ := ethdb.NewMemDatabase() tx1 := types.NewTransaction(1, common.BytesToAddress([]byte{0x11}), big.NewInt(111), big.NewInt(1111), big.NewInt(11111), []byte{0x11, 0x11, 0x11}) tx2 := types.NewTransaction(2, common.BytesToAddress([]byte{0x22}), big.NewInt(222), big.NewInt(2222), big.NewInt(22222), []byte{0x22, 0x22, 0x22}) tx3 := types.NewTransaction(3, common.BytesToAddress([]byte{0x33}), big.NewInt(333), big.NewInt(3333), big.NewInt(33333), []byte{0x33, 0x33, 0x33}) txs := []*types.Transaction{tx1, tx2, tx3} block := types.NewBlock(&types.Header{Number: big.NewInt(314)}, txs, nil, nil) // Check that no transactions entries are in a pristine database for i, tx := range txs { if txn, _, _, _ := GetTransaction(db, tx.Hash()); txn != nil { t.Fatalf("tx #%d [%x]: non existent transaction returned: %v", i, tx.Hash(), txn) } } // Insert all the transactions into the database, and verify contents if err := WriteTransactions(db, block); err != nil { t.Fatalf("failed to write transactions: %v", err) } for i, tx := range txs { if txn, hash, number, index := GetTransaction(db, tx.Hash()); txn == nil { t.Fatalf("tx #%d [%x]: transaction not found", i, tx.Hash()) } else { if hash != block.Hash() || number != block.NumberU64() || index != uint64(i) { t.Fatalf("tx #%d [%x]: positional metadata mismatch: have %x/%d/%d, want %x/%v/%v", i, tx.Hash(), hash, number, index, block.Hash(), block.NumberU64(), i) } if tx.String() != txn.String() { t.Fatalf("tx #%d [%x]: transaction mismatch: have %v, want %v", i, tx.Hash(), txn, tx) } } } // Delete the transactions and check purge for i, tx := range txs { DeleteTransaction(db, tx.Hash()) if txn, _, _, _ := GetTransaction(db, tx.Hash()); txn != nil { t.Fatalf("tx #%d [%x]: deleted transaction returned: %v", i, tx.Hash(), txn) } } }
// InsertPreState populates the given database with the genesis // accounts defined by the test. func (t *BlockTest) InsertPreState(db ethdb.Database, am *accounts.Manager) (*state.StateDB, error) { statedb, err := state.New(common.Hash{}, db) if err != nil { return nil, err } for addrString, acct := range t.preAccounts { addr, err := hex.DecodeString(addrString) if err != nil { return nil, err } code, err := hex.DecodeString(strings.TrimPrefix(acct.Code, "0x")) if err != nil { return nil, err } balance, ok := new(big.Int).SetString(acct.Balance, 0) if !ok { return nil, err } nonce, err := strconv.ParseUint(prepInt(16, acct.Nonce), 16, 64) if err != nil { return nil, err } if acct.PrivateKey != "" { privkey, err := hex.DecodeString(strings.TrimPrefix(acct.PrivateKey, "0x")) err = crypto.ImportBlockTestKey(privkey) err = am.TimedUnlock(common.BytesToAddress(addr), "", 999999*time.Second) if err != nil { return nil, err } } obj := statedb.CreateAccount(common.HexToAddress(addrString)) obj.SetCode(code) obj.SetBalance(balance) obj.SetNonce(nonce) for k, v := range acct.Storage { statedb.SetState(common.HexToAddress(addrString), common.HexToHash(k), common.HexToHash(v)) } } root, err := statedb.Commit() if err != nil { return nil, fmt.Errorf("error writing state: %v", err) } if t.Genesis.Root() != root { return nil, fmt.Errorf("computed state root does not match genesis block: genesis=%x computed=%x", t.Genesis.Root().Bytes()[:4], root.Bytes()[:4]) } return statedb, nil }
func (self *jsre) UnlockAccount(addr []byte) bool { fmt.Printf("Please unlock account %x.\n", addr) pass, err := self.PasswordPrompt("Passphrase: ") if err != nil { return false } // TODO: allow retry if err := self.expanse.AccountManager().Unlock(common.BytesToAddress(addr), pass); err != nil { return false } else { fmt.Println("Account is now unlocked for this session.") return true } }
// Tests that receipts can be stored and retrieved. func TestReceiptStorage(t *testing.T) { db, _ := ethdb.NewMemDatabase() receipt1 := &types.Receipt{ PostState: []byte{0x01}, CumulativeGasUsed: big.NewInt(1), Logs: vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte{0x11})}, &vm.Log{Address: common.BytesToAddress([]byte{0x01, 0x11})}, }, TxHash: common.BytesToHash([]byte{0x11, 0x11}), ContractAddress: common.BytesToAddress([]byte{0x01, 0x11, 0x11}), GasUsed: big.NewInt(111111), } receipt2 := &types.Receipt{ PostState: []byte{0x02}, CumulativeGasUsed: big.NewInt(2), Logs: vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte{0x22})}, &vm.Log{Address: common.BytesToAddress([]byte{0x02, 0x22})}, }, TxHash: common.BytesToHash([]byte{0x22, 0x22}), ContractAddress: common.BytesToAddress([]byte{0x02, 0x22, 0x22}), GasUsed: big.NewInt(222222), } receipts := []*types.Receipt{receipt1, receipt2} // Check that no receipt entries are in a pristine database for i, receipt := range receipts { if r := GetReceipt(db, receipt.TxHash); r != nil { t.Fatalf("receipt #%d [%x]: non existent receipt returned: %v", i, receipt.TxHash, r) } } // Insert all the receipts into the database, and verify contents if err := WriteReceipts(db, receipts); err != nil { t.Fatalf("failed to write receipts: %v", err) } for i, receipt := range receipts { if r := GetReceipt(db, receipt.TxHash); r == nil { t.Fatalf("receipt #%d [%x]: receipt not found", i, receipt.TxHash) } else { rlpHave, _ := rlp.EncodeToBytes(r) rlpWant, _ := rlp.EncodeToBytes(receipt) if bytes.Compare(rlpHave, rlpWant) != 0 { t.Fatalf("receipt #%d [%x]: receipt mismatch: have %v, want %v", i, receipt.TxHash, r, receipt) } } } // Delete the receipts and check purge for i, receipt := range receipts { DeleteReceipt(db, receipt.TxHash) if r := GetReceipt(db, receipt.TxHash); r != nil { t.Fatalf("receipt #%d [%x]: deleted receipt returned: %v", i, receipt.TxHash, r) } } }
func (t *BlockTest) ValidatePostState(statedb *state.StateDB) error { // validate post state accounts in test file against what we have in state db for addrString, acct := range t.postAccounts { // XXX: is is worth it checking for errors here? addr, err := hex.DecodeString(addrString) if err != nil { return err } code, err := hex.DecodeString(strings.TrimPrefix(acct.Code, "0x")) if err != nil { return err } balance, ok := new(big.Int).SetString(acct.Balance, 0) if !ok { return err } nonce, err := strconv.ParseUint(prepInt(16, acct.Nonce), 16, 64) if err != nil { return err } // address is indirectly verified by the other fields, as it's the db key code2 := statedb.GetCode(common.BytesToAddress(addr)) balance2 := statedb.GetBalance(common.BytesToAddress(addr)) nonce2 := statedb.GetNonce(common.BytesToAddress(addr)) if !bytes.Equal(code2, code) { return fmt.Errorf("account code mismatch for addr: %s want: %s have: %s", addrString, hex.EncodeToString(code), hex.EncodeToString(code2)) } if balance2.Cmp(balance) != 0 { return fmt.Errorf("account balance mismatch for addr: %s, want: %d, have: %d", addrString, balance, balance2) } if nonce2 != nonce { return fmt.Errorf("account nonce mismatch for addr: %s want: %d have: %d", addrString, nonce, nonce2) } } return nil }
// Tests that receipts associated with a single block can be stored and retrieved. func TestBlockReceiptStorage(t *testing.T) { db, _ := ethdb.NewMemDatabase() receipt1 := &types.Receipt{ PostState: []byte{0x01}, CumulativeGasUsed: big.NewInt(1), Logs: vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte{0x11})}, &vm.Log{Address: common.BytesToAddress([]byte{0x01, 0x11})}, }, TxHash: common.BytesToHash([]byte{0x11, 0x11}), ContractAddress: common.BytesToAddress([]byte{0x01, 0x11, 0x11}), GasUsed: big.NewInt(111111), } receipt2 := &types.Receipt{ PostState: []byte{0x02}, CumulativeGasUsed: big.NewInt(2), Logs: vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte{0x22})}, &vm.Log{Address: common.BytesToAddress([]byte{0x02, 0x22})}, }, TxHash: common.BytesToHash([]byte{0x22, 0x22}), ContractAddress: common.BytesToAddress([]byte{0x02, 0x22, 0x22}), GasUsed: big.NewInt(222222), } receipts := []*types.Receipt{receipt1, receipt2} // Check that no receipt entries are in a pristine database hash := common.BytesToHash([]byte{0x03, 0x14}) if rs := GetBlockReceipts(db, hash); len(rs) != 0 { t.Fatalf("non existent receipts returned: %v", rs) } // Insert the receipt slice into the database and check presence if err := WriteBlockReceipts(db, hash, receipts); err != nil { t.Fatalf("failed to write block receipts: %v", err) } if rs := GetBlockReceipts(db, hash); len(rs) == 0 { t.Fatalf("no receipts returned") } else { for i := 0; i < len(receipts); i++ { rlpHave, _ := rlp.EncodeToBytes(rs[i]) rlpWant, _ := rlp.EncodeToBytes(receipts[i]) if bytes.Compare(rlpHave, rlpWant) != 0 { t.Fatalf("receipt #%d: receipt mismatch: have %v, want %v", i, rs[i], receipts[i]) } } } // Delete the receipt slice and check purge DeleteBlockReceipts(db, hash) if rs := GetBlockReceipts(db, hash); len(rs) != 0 { t.Fatalf("deleted receipts returned: %v", rs) } }
func getKeyAddresses(keysDirPath string) (addresses []common.Address, err error) { fileInfos, err := ioutil.ReadDir(keysDirPath) if err != nil { return nil, err } for _, fileInfo := range fileInfos { filename := fileInfo.Name() if len(filename) >= 40 { addr := filename[len(filename)-40 : len(filename)] address, err := hex.DecodeString(addr) if err == nil { addresses = append(addresses, common.BytesToAddress(address)) } } } return addresses, err }
func (self *StateDB) RawDump() World { world := World{ Root: common.Bytes2Hex(self.trie.Root()), Accounts: make(map[string]Account), } it := self.trie.Iterator() for it.Next() { addr := self.trie.GetKey(it.Key) stateObject := NewStateObjectFromBytes(common.BytesToAddress(addr), it.Value, self.db) account := Account{Balance: stateObject.balance.String(), Nonce: stateObject.nonce, Root: common.Bytes2Hex(stateObject.Root()), CodeHash: common.Bytes2Hex(stateObject.codeHash)} account.Storage = make(map[string]string) storageIt := stateObject.trie.Iterator() for storageIt.Next() { account.Storage[common.Bytes2Hex(self.trie.GetKey(storageIt.Key))] = common.Bytes2Hex(storageIt.Value) } world.Accounts[common.Bytes2Hex(addr)] = account } return world }
// Tests that updating a state trie does not leak any database writes prior to // actually committing the state. func TestUpdateLeaks(t *testing.T) { // Create an empty state database db, _ := ethdb.NewMemDatabase() state, _ := New(common.Hash{}, db) // Update it with some accounts for i := byte(0); i < 255; i++ { addr := common.BytesToAddress([]byte{i}) state.AddBalance(addr, big.NewInt(int64(11*i))) state.SetNonce(addr, uint64(42*i)) if i%2 == 0 { state.SetState(addr, common.BytesToHash([]byte{i, i, i}), common.BytesToHash([]byte{i, i, i, i})) } if i%3 == 0 { state.SetCode(addr, []byte{i, i, i, i, i}) } state.IntermediateRoot() } // Ensure that no data was leaked into the database for _, key := range db.Keys() { value, _ := db.Get(key) t.Errorf("State leaked into database: %x -> %x", key, value) } }
func TestMipmapBloom(t *testing.T) { db, _ := ethdb.NewMemDatabase() receipt1 := new(types.Receipt) receipt1.Logs = vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte("test"))}, &vm.Log{Address: common.BytesToAddress([]byte("address"))}, } receipt2 := new(types.Receipt) receipt2.Logs = vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte("test"))}, &vm.Log{Address: common.BytesToAddress([]byte("address1"))}, } WriteMipmapBloom(db, 1, types.Receipts{receipt1}) WriteMipmapBloom(db, 2, types.Receipts{receipt2}) for _, level := range MIPMapLevels { bloom := GetMipmapBloom(db, 2, level) if !bloom.Test(new(big.Int).SetBytes([]byte("address1"))) { t.Error("expected test to be included on level:", level) } } // reset db, _ = ethdb.NewMemDatabase() receipt := new(types.Receipt) receipt.Logs = vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte("test"))}, } WriteMipmapBloom(db, 999, types.Receipts{receipt1}) receipt = new(types.Receipt) receipt.Logs = vm.Logs{ &vm.Log{Address: common.BytesToAddress([]byte("test 1"))}, } WriteMipmapBloom(db, 1000, types.Receipts{receipt}) bloom := GetMipmapBloom(db, 1000, 1000) if bloom.TestBytes([]byte("test")) { t.Error("test should not have been included") } }
func verifyTxFields(txTest TransactionTest, decodedTx *types.Transaction) (err error) { defer func() { if recovered := recover(); recovered != nil { buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] err = fmt.Errorf("%v\n%s", recovered, buf) } }() var ( decodedSender common.Address ) chainConfig := &core.ChainConfig{HomesteadBlock: params.MainNetHomesteadBlock} if chainConfig.IsHomestead(common.String2Big(txTest.Blocknumber)) { decodedSender, err = decodedTx.From() } else { decodedSender, err = decodedTx.FromFrontier() } if err != nil { return err } expectedSender := mustConvertAddress(txTest.Sender) if expectedSender != decodedSender { return fmt.Errorf("Sender mismatch: %v %v", expectedSender, decodedSender) } expectedData := mustConvertBytes(txTest.Transaction.Data) if !bytes.Equal(expectedData, decodedTx.Data()) { return fmt.Errorf("Tx input data mismatch: %#v %#v", expectedData, decodedTx.Data()) } expectedGasLimit := mustConvertBigInt(txTest.Transaction.GasLimit, 16) if expectedGasLimit.Cmp(decodedTx.Gas()) != 0 { return fmt.Errorf("GasLimit mismatch: %v %v", expectedGasLimit, decodedTx.Gas()) } expectedGasPrice := mustConvertBigInt(txTest.Transaction.GasPrice, 16) if expectedGasPrice.Cmp(decodedTx.GasPrice()) != 0 { return fmt.Errorf("GasPrice mismatch: %v %v", expectedGasPrice, decodedTx.GasPrice()) } expectedNonce := mustConvertUint(txTest.Transaction.Nonce, 16) if expectedNonce != decodedTx.Nonce() { return fmt.Errorf("Nonce mismatch: %v %v", expectedNonce, decodedTx.Nonce()) } v, r, s := decodedTx.SignatureValues() expectedR := mustConvertBigInt(txTest.Transaction.R, 16) if r.Cmp(expectedR) != 0 { return fmt.Errorf("R mismatch: %v %v", expectedR, r) } expectedS := mustConvertBigInt(txTest.Transaction.S, 16) if s.Cmp(expectedS) != 0 { return fmt.Errorf("S mismatch: %v %v", expectedS, s) } expectedV := mustConvertUint(txTest.Transaction.V, 16) if uint64(v) != expectedV { return fmt.Errorf("V mismatch: %v %v", expectedV, v) } expectedTo := mustConvertAddress(txTest.Transaction.To) if decodedTx.To() == nil { if expectedTo != common.BytesToAddress([]byte{}) { // "empty" or "zero" address return fmt.Errorf("To mismatch when recipient is nil (contract creation): %v", expectedTo) } } else { if expectedTo != *decodedTx.To() { return fmt.Errorf("To mismatch: %v %v", expectedTo, *decodedTx.To()) } } expectedValue := mustConvertBigInt(txTest.Transaction.Value, 16) if expectedValue.Cmp(decodedTx.Value()) != 0 { return fmt.Errorf("Value mismatch: %v %v", expectedValue, decodedTx.Value()) } return nil }
// Creates an expanse address given the bytes and the nonce func CreateAddress(b common.Address, nonce uint64) common.Address { data, _ := rlp.EncodeToBytes([]interface{}{b, nonce}) return common.BytesToAddress(Sha3(data)[12:]) //return Sha3(common.NewValue([]interface{}{b, nonce}).Encode())[12:] }
// toGoType parses the input and casts it to the proper type defined by the ABI // argument in T. func toGoType(i int, t Argument, output []byte) (interface{}, error) { // we need to treat slices differently if (t.Type.IsSlice || t.Type.IsArray) && t.Type.T != BytesTy && t.Type.T != StringTy && t.Type.T != FixedBytesTy { return toGoSlice(i, t, output) } index := i * 32 if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), index+32) } // Parse the given index output and check whether we need to read // a different offset and length based on the type (i.e. string, bytes) var returnOutput []byte switch t.Type.T { case StringTy, BytesTy: // variable arrays are written at the end of the return bytes // parse offset from which we should start reading offset := int(common.BytesToBig(output[index : index+32]).Uint64()) if offset+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32) } // parse the size up until we should be reading size := int(common.BytesToBig(output[offset : offset+32]).Uint64()) if offset+32+size > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32+size) } // get the bytes for this return value returnOutput = output[offset+32 : offset+32+size] default: returnOutput = output[index : index+32] } // convert the bytes to whatever is specified by the ABI. switch t.Type.T { case IntTy, UintTy: bigNum := common.BytesToBig(returnOutput) // If the type is a integer convert to the integer type // specified by the ABI. switch t.Type.Kind { case reflect.Uint8: return uint8(bigNum.Uint64()), nil case reflect.Uint16: return uint16(bigNum.Uint64()), nil case reflect.Uint32: return uint32(bigNum.Uint64()), nil case reflect.Uint64: return uint64(bigNum.Uint64()), nil case reflect.Int8: return int8(bigNum.Int64()), nil case reflect.Int16: return int16(bigNum.Int64()), nil case reflect.Int32: return int32(bigNum.Int64()), nil case reflect.Int64: return int64(bigNum.Int64()), nil case reflect.Ptr: return bigNum, nil } case BoolTy: return common.BytesToBig(returnOutput).Uint64() > 0, nil case AddressTy: return common.BytesToAddress(returnOutput), nil case HashTy: return common.BytesToHash(returnOutput), nil case BytesTy, FixedBytesTy: return returnOutput, nil case StringTy: return string(returnOutput), nil } return nil, fmt.Errorf("abi: unknown type %v", t.Type.T) }
func (self *testFrontend) UnlockAccount(acc []byte) bool { self.expanse.AccountManager().Unlock(common.BytesToAddress(acc), "password") return true }
// toGoSliceType prses the input and casts it to the proper slice defined by the ABI // argument in T. func toGoSlice(i int, t Argument, output []byte) (interface{}, error) { index := i * 32 // The slice must, at very least be large enough for the index+32 which is exactly the size required // for the [offset in output, size of offset]. if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: insufficient size output %d require %d", len(output), index+32) } elem := t.Type.Elem // first we need to create a slice of the type var refSlice reflect.Value switch elem.T { case IntTy, UintTy, BoolTy: // int, uint, bool can all be of type big int. refSlice = reflect.ValueOf([]*big.Int(nil)) case AddressTy: // address must be of slice Address refSlice = reflect.ValueOf([]common.Address(nil)) case HashTy: // hash must be of slice hash refSlice = reflect.ValueOf([]common.Hash(nil)) case FixedBytesTy: refSlice = reflect.ValueOf([]byte(nil)) default: // no other types are supported return nil, fmt.Errorf("abi: unsupported slice type %v", elem.T) } // get the offset which determines the start of this array ... offset := int(common.BytesToBig(output[index : index+32]).Uint64()) if offset+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: offset %d would go over slice boundary (len=%d)", len(output), offset+32) } slice := output[offset:] // ... starting with the size of the array in elements ... size := int(common.BytesToBig(slice[:32]).Uint64()) slice = slice[32:] // ... and make sure that we've at the very least the amount of bytes // available in the buffer. if size*32 > len(slice) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: insufficient size output %d require %d", len(output), offset+32+size*32) } // reslice to match the required size slice = slice[:(size * 32)] for i := 0; i < size; i++ { var ( inter interface{} // interface type returnOutput = slice[i*32 : i*32+32] // the return output ) // set inter to the correct type (cast) switch elem.T { case IntTy, UintTy: inter = common.BytesToBig(returnOutput) case BoolTy: inter = common.BytesToBig(returnOutput).Uint64() > 0 case AddressTy: inter = common.BytesToAddress(returnOutput) case HashTy: inter = common.BytesToHash(returnOutput) } // append the item to our reflect slice refSlice = reflect.Append(refSlice, reflect.ValueOf(inter)) } // return the interface return refSlice.Interface(), nil }
func TestMipmapChain(t *testing.T) { dir, err := ioutil.TempDir("", "mipmap") if err != nil { t.Fatal(err) } defer os.RemoveAll(dir) var ( db, _ = ethdb.NewLDBDatabase(dir, 16) key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") addr = crypto.PubkeyToAddress(key1.PublicKey) addr2 = common.BytesToAddress([]byte("jeff")) hash1 = common.BytesToHash([]byte("topic1")) ) defer db.Close() genesis := WriteGenesisBlockForTesting(db, GenesisAccount{addr, big.NewInt(1000000)}) chain, receipts := GenerateChain(genesis, db, 1010, func(i int, gen *BlockGen) { var receipts types.Receipts switch i { case 1: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash1}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 1000: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{&vm.Log{Address: addr2}} gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} } // store the receipts err := WriteReceipts(db, receipts) if err != nil { t.Fatal(err) } WriteMipmapBloom(db, uint64(i+1), receipts) }) for i, block := range chain { WriteBlock(db, block) if err := WriteCanonicalHash(db, block.Hash(), block.NumberU64()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := WriteHeadBlockHash(db, block.Hash()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := WriteBlockReceipts(db, block.Hash(), receipts[i]); err != nil { t.Fatal("error writing block receipts:", err) } } bloom := GetMipmapBloom(db, 0, 1000) if bloom.TestBytes(addr2[:]) { t.Error("address was included in bloom and should not have") } }
func BenchmarkMipmaps(b *testing.B) { dir, err := ioutil.TempDir("", "mipmap") if err != nil { b.Fatal(err) } defer os.RemoveAll(dir) var ( db, _ = ethdb.NewLDBDatabase(dir, 0, 0) key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") addr1 = crypto.PubkeyToAddress(key1.PublicKey) addr2 = common.BytesToAddress([]byte("jeff")) addr3 = common.BytesToAddress([]byte("expanse")) addr4 = common.BytesToAddress([]byte("random addresses please")) ) defer db.Close() genesis := core.WriteGenesisBlockForTesting(db, core.GenesisAccount{Address: addr1, Balance: big.NewInt(1000000)}) chain, receipts := core.GenerateChain(nil, genesis, db, 100010, func(i int, gen *core.BlockGen) { var receipts types.Receipts switch i { case 2403: receipt := makeReceipt(addr1) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) case 1034: receipt := makeReceipt(addr2) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) case 34: receipt := makeReceipt(addr3) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) case 99999: receipt := makeReceipt(addr4) receipts = types.Receipts{receipt} gen.AddUncheckedReceipt(receipt) } // store the receipts err := core.WriteReceipts(db, receipts) if err != nil { b.Fatal(err) } core.WriteMipmapBloom(db, uint64(i+1), receipts) }) for i, block := range chain { core.WriteBlock(db, block) if err := core.WriteCanonicalHash(db, block.Hash(), block.NumberU64()); err != nil { b.Fatalf("failed to insert block number: %v", err) } if err := core.WriteHeadBlockHash(db, block.Hash()); err != nil { b.Fatalf("failed to insert block number: %v", err) } if err := core.WriteBlockReceipts(db, block.Hash(), receipts[i]); err != nil { b.Fatal("error writing block receipts:", err) } } b.ResetTimer() filter := New(db) filter.SetAddresses([]common.Address{addr1, addr2, addr3, addr4}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) for i := 0; i < b.N; i++ { logs := filter.Find() if len(logs) != 4 { b.Fatal("expected 4 log, got", len(logs)) } } }
func PubkeyToAddress(p ecdsa.PublicKey) common.Address { pubBytes := FromECDSAPub(&p) return common.BytesToAddress(Keccak256(pubBytes[1:])[12:]) }
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-expanse library. If not, see <http://www.gnu.org/licenses/>. package state import ( "testing" "github.com/expanse-project/go-expanse/common" "github.com/expanse-project/go-expanse/ethdb" ) var addr = common.BytesToAddress([]byte("test")) func create() (*ManagedState, *account) { db, _ := ethdb.NewMemDatabase() statedb := New(common.Hash{}, db) ms := ManageState(statedb) so := &StateObject{address: addr, nonce: 100} ms.StateDB.stateObjects[addr.Str()] = so ms.accounts[addr.Str()] = newAccount(so) return ms, ms.accounts[addr.Str()] } func TestNewNonce(t *testing.T) { ms, _ := create()
// Creates an expanse address given the bytes and the nonce func CreateAddress(b common.Address, nonce uint64) common.Address { data, _ := rlp.EncodeToBytes([]interface{}{b, nonce}) return common.BytesToAddress(Keccak256(data)[12:]) }
func TestFilters(t *testing.T) { dir, err := ioutil.TempDir("", "mipmap") if err != nil { t.Fatal(err) } defer os.RemoveAll(dir) var ( db, _ = ethdb.NewLDBDatabase(dir, 0, 0) key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") addr = crypto.PubkeyToAddress(key1.PublicKey) hash1 = common.BytesToHash([]byte("topic1")) hash2 = common.BytesToHash([]byte("topic2")) hash3 = common.BytesToHash([]byte("topic3")) hash4 = common.BytesToHash([]byte("topic4")) ) defer db.Close() genesis := core.WriteGenesisBlockForTesting(db, core.GenesisAccount{Address: addr, Balance: big.NewInt(1000000)}) chain, receipts := core.GenerateChain(nil, genesis, db, 1000, func(i int, gen *core.BlockGen) { var receipts types.Receipts switch i { case 1: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash1}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 2: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash2}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 998: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash3}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} case 999: receipt := types.NewReceipt(nil, new(big.Int)) receipt.Logs = vm.Logs{ &vm.Log{ Address: addr, Topics: []common.Hash{hash4}, }, } gen.AddUncheckedReceipt(receipt) receipts = types.Receipts{receipt} } // store the receipts err := core.WriteReceipts(db, receipts) if err != nil { t.Fatal(err) } // i is used as block number for the writes but since the i // starts at 0 and block 0 (genesis) is already present increment // by one core.WriteMipmapBloom(db, uint64(i+1), receipts) }) for i, block := range chain { core.WriteBlock(db, block) if err := core.WriteCanonicalHash(db, block.Hash(), block.NumberU64()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := core.WriteHeadBlockHash(db, block.Hash()); err != nil { t.Fatalf("failed to insert block number: %v", err) } if err := core.WriteBlockReceipts(db, block.Hash(), receipts[i]); err != nil { t.Fatal("error writing block receipts:", err) } } filter := New(db) filter.SetAddresses([]common.Address{addr}) filter.SetTopics([][]common.Hash{[]common.Hash{hash1, hash2, hash3, hash4}}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs := filter.Find() if len(logs) != 4 { t.Error("expected 4 log, got", len(logs)) } filter = New(db) filter.SetAddresses([]common.Address{addr}) filter.SetTopics([][]common.Hash{[]common.Hash{hash3}}) filter.SetBeginBlock(900) filter.SetEndBlock(999) logs = filter.Find() if len(logs) != 1 { t.Error("expected 1 log, got", len(logs)) } if len(logs) > 0 && logs[0].Topics[0] != hash3 { t.Errorf("expected log[0].Topics[0] to be %x, got %x", hash3, logs[0].Topics[0]) } filter = New(db) filter.SetAddresses([]common.Address{addr}) filter.SetTopics([][]common.Hash{[]common.Hash{hash3}}) filter.SetBeginBlock(990) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 1 { t.Error("expected 1 log, got", len(logs)) } if len(logs) > 0 && logs[0].Topics[0] != hash3 { t.Errorf("expected log[0].Topics[0] to be %x, got %x", hash3, logs[0].Topics[0]) } filter = New(db) filter.SetTopics([][]common.Hash{[]common.Hash{hash1, hash2}}) filter.SetBeginBlock(1) filter.SetEndBlock(10) logs = filter.Find() if len(logs) != 2 { t.Error("expected 2 log, got", len(logs)) } failHash := common.BytesToHash([]byte("fail")) filter = New(db) filter.SetTopics([][]common.Hash{[]common.Hash{failHash}}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 0 { t.Error("expected 0 log, got", len(logs)) } failAddr := common.BytesToAddress([]byte("failmenow")) filter = New(db) filter.SetAddresses([]common.Address{failAddr}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 0 { t.Error("expected 0 log, got", len(logs)) } filter = New(db) filter.SetTopics([][]common.Hash{[]common.Hash{failHash}, []common.Hash{hash1}}) filter.SetBeginBlock(0) filter.SetEndBlock(-1) logs = filter.Find() if len(logs) != 0 { t.Error("expected 0 log, got", len(logs)) } }