func main() { flag.Parse() h1Size := 100 numHeads := 1 n := 128 m := 20 c := ntm.NewEmptyController1(1, 1, h1Size, numHeads, n, m) weightsFromFile(c) runs := make([]Run, 0) for i := 0; i < 1; i++ { prob := ngram.GenProb() var l float64 = 0 var x [][]float64 var y [][]float64 var machines []*ntm.NTM sampletimes := 100 for j := 0; j < sampletimes; j++ { x, y = ngram.GenSeq(prob) model := &ntm.LogisticModel{Y: y} machines = ntm.ForwardBackward(c, x, model) l += model.Loss(ntm.Predictions(machines)) if (j+1)%10 == 0 { log.Printf("%d %d %f", i, j+1, l/float64(j+1)) } } l = l / float64(sampletimes) r := Run{ Conf: RunConf{Prob: prob}, BitsPerSeq: l, X: x, Y: y, Predictions: ntm.Predictions(machines), HeadWeights: ntm.HeadWeights(machines), } runs = append(runs, r) //log.Printf("x: %v", x) //log.Printf("y: %v", y) //log.Printf("predictions: %s", ntm.Sprint2(ntm.Predictions(machines))) } http.HandleFunc("/", root(runs)) if err := http.ListenAndServe(":9000", nil); err != nil { log.Printf("%v", err) } }
func main() { flag.Parse() if *cpuprofile != "" { f, err := os.Create(*cpuprofile) if err != nil { log.Fatal(err) } pprof.StartCPUProfile(f) defer pprof.StopCPUProfile() } http.HandleFunc("/Weights", func(w http.ResponseWriter, r *http.Request) { c := make(chan []byte) weightsChan <- c w.Write(<-c) }) http.HandleFunc("/Loss", func(w http.ResponseWriter, r *http.Request) { c := make(chan []float64) lossChan <- c json.NewEncoder(w).Encode(<-c) }) http.HandleFunc("/PrintDebug", func(w http.ResponseWriter, r *http.Request) { printDebugChan <- struct{}{} }) port := 8087 go func() { log.Printf("Listening on port %d", port) if err := http.ListenAndServe(fmt.Sprintf(":%d", port), nil); err != nil { log.Fatalf("%v", err) } }() var seed int64 = 7 rand.Seed(seed) h1Size := 100 numHeads := 1 n := 128 m := 20 c := ntm.NewEmptyController1(1, 1, h1Size, numHeads, n, m) weights := c.WeightsVal() for i := range weights { weights[i] = 1 * (rand.Float64() - 0.5) } losses := make([]float64, 0) doPrint := false rmsp := ntm.NewRMSProp(c) log.Printf("seed: %d, numweights: %d, numHeads: %d", seed, len(c.WeightsVal()), c.NumHeads()) for i := 1; ; i++ { x, y := ngram.GenSeq(ngram.GenProb()) machines := rmsp.Train(x, &ntm.LogisticModel{Y: y}, 0.95, 0.5, 1e-3, 1e-3) if i%1000 == 0 { prob := ngram.GenProb() var l float64 = 0 samn := 100 for j := 0; j < samn; j++ { x, y = ngram.GenSeq(prob) model := &ntm.LogisticModel{Y: y} machines = ntm.ForwardBackward(c, x, model) l += model.Loss(ntm.Predictions(machines)) } l = l / float64(samn) losses = append(losses, l) log.Printf("%d, bits-per-seq: %f", i, l) } handleHTTP(c, losses, &doPrint) if i%1000 == 0 && doPrint { printDebug(x, y, machines) } } }