func (c *compiler) makeInterface(v *LLVMValue, iface types.Type) *LLVMValue { llv := v.LLVMValue() lltyp := llv.Type() i8ptr := llvm.PointerType(llvm.Int8Type(), 0) if lltyp.TypeKind() == llvm.PointerTypeKind { llv = c.builder.CreateBitCast(llv, i8ptr, "") } else { // If the value fits exactly in a pointer, then we can just // bitcast it. Otherwise we need to malloc. if c.target.TypeStoreSize(lltyp) <= uint64(c.target.PointerSize()) { bits := c.target.TypeSizeInBits(lltyp) if bits > 0 { llv = coerce(c.builder, llv, llvm.IntType(int(bits))) llv = c.builder.CreateIntToPtr(llv, i8ptr, "") } else { llv = llvm.ConstNull(i8ptr) } } else { ptr := c.createTypeMalloc(lltyp) c.builder.CreateStore(llv, ptr) llv = c.builder.CreateBitCast(ptr, i8ptr, "") } } value := llvm.Undef(c.types.ToLLVM(iface)) rtype := c.types.ToRuntime(v.Type()) rtype = c.builder.CreateBitCast(rtype, llvm.PointerType(llvm.Int8Type(), 0), "") value = c.builder.CreateInsertValue(value, rtype, 0, "") value = c.builder.CreateInsertValue(value, llv, 1, "") if iface.Underlying().(*types.Interface).NumMethods() > 0 { result := c.NewValue(value, types.NewInterface(nil, nil)) result, _ = result.convertE2I(iface) return result } return c.NewValue(value, iface) }
func (c *compiler) createMainFunction() error { // In a PNaCl program (plugin), there should not be a "main.main"; // instead, we expect a "main.CreateModule" function. // See pkg/nacl/ppapi/ppapi.go for more details. mainMain := c.module.NamedFunction("main.main") /* if c.pnacl { // PNaCl's libppapi_stub.a implements "main", which simply // calls through to PpapiPluginMain. We define our own "main" // so that we can capture argc/argv. if !mainMain.IsNil() { return fmt.Errorf("Found main.main") } pluginMain := c.RuntimeFunction("PpapiPluginMain", "func() int32") // Synthesise a main which has no return value. We could cast // PpapiPluginMain, but this is potentially unsafe as its // calling convention is unspecified. ftyp := llvm.FunctionType(llvm.VoidType(), nil, false) mainMain = llvm.AddFunction(c.module.Module, "main.main", ftyp) entry := llvm.AddBasicBlock(mainMain, "entry") c.builder.SetInsertPointAtEnd(entry) c.builder.CreateCall(pluginMain, nil, "") c.builder.CreateRetVoid() } else */{ mainMain = c.module.NamedFunction("main.main") } if mainMain.IsNil() { return fmt.Errorf("Could not find main.main") } // runtime.main is called by main, with argc, argv, argp, // and a pointer to main.main, which must be a niladic // function with no result. runtimeMain := c.runtime.main.LLVMValue() ptrptr := llvm.PointerType(llvm.PointerType(llvm.Int8Type(), 0), 0) ftyp := llvm.FunctionType(llvm.Int32Type(), []llvm.Type{llvm.Int32Type(), ptrptr, ptrptr}, true) main := llvm.AddFunction(c.module.Module, "main", ftyp) c.builder.SetCurrentDebugLocation(c.debug.MDNode(nil)) entry := llvm.AddBasicBlock(main, "entry") c.builder.SetInsertPointAtEnd(entry) runtimeMainParamTypes := runtimeMain.Type().ElementType().ParamTypes() args := []llvm.Value{ main.Param(0), // argc main.Param(1), // argv main.Param(2), // argp c.builder.CreateBitCast(mainMain, runtimeMainParamTypes[3], ""), } result := c.builder.CreateCall(runtimeMain, args, "") c.builder.CreateRet(result) return nil }
func (tm *llvmTypeMap) funcLLVMType(f *types.Signature, name string) llvm.Type { // If there's a receiver change the receiver to an // additional (first) parameter, and take the value of // the resulting signature instead. if recv := f.Recv(); recv != nil { params := f.Params() paramvars := make([]*types.Var, int(params.Len()+1)) paramvars[0] = recv for i := 0; i < int(params.Len()); i++ { paramvars[i+1] = params.At(i) } params = types.NewTuple(paramvars...) f := types.NewSignature(nil, nil, params, f.Results(), f.Variadic()) return tm.toLLVM(f, name) } if typ, ok := tm.types.At(f).(llvm.Type); ok { return typ } typ := llvm.GlobalContext().StructCreateNamed(name) tm.types.Set(f, typ) params := f.Params() param_types := make([]llvm.Type, params.Len()) for i := range param_types { llvmtyp := tm.ToLLVM(params.At(i).Type()) param_types[i] = llvmtyp } var return_type llvm.Type results := f.Results() switch nresults := int(results.Len()); nresults { case 0: return_type = llvm.VoidType() case 1: return_type = tm.ToLLVM(results.At(0).Type()) default: elements := make([]llvm.Type, nresults) for i := range elements { result := results.At(i) elements[i] = tm.ToLLVM(result.Type()) } return_type = llvm.StructType(elements, false) } fntyp := llvm.FunctionType(return_type, param_types, false) fnptrtyp := llvm.PointerType(fntyp, 0) i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{fnptrtyp, i8ptr} // func, closure typ.StructSetBody(elements, false) return typ }
func (tm *TypeMap) makeAlgorithmTable(t types.Type) llvm.Value { // TODO set these to actual functions. hashAlg := llvm.ConstNull(llvm.PointerType(tm.alg.hashAlgFunctionType, 0)) printAlg := llvm.ConstNull(llvm.PointerType(tm.alg.printAlgFunctionType, 0)) copyAlg := llvm.ConstNull(llvm.PointerType(tm.alg.copyAlgFunctionType, 0)) equalAlg := tm.alg.eqalg(t) elems := []llvm.Value{ AlgorithmHash: hashAlg, AlgorithmEqual: equalAlg, AlgorithmPrint: printAlg, AlgorithmCopy: copyAlg, } return llvm.ConstStruct(elems, false) }
func (tm *TypeMap) makeRuntimeTypeGlobal(v llvm.Value, name string) (global, ptr llvm.Value) { global = llvm.AddGlobal(tm.module, v.Type(), typeSymbol(name)) global.SetInitializer(v) global.SetLinkage(llvm.LinkOnceAnyLinkage) ptr = llvm.ConstBitCast(global, llvm.PointerType(tm.runtime.rtype.llvm, 0)) return global, ptr }
// interfaceMethod returns a function pointer for the specified // interface and method pair. func (c *compiler) interfaceMethod(iface *LLVMValue, method *types.Func) *LLVMValue { lliface := iface.LLVMValue() llitab := c.builder.CreateExtractValue(lliface, 0, "") llvalue := c.builder.CreateExtractValue(lliface, 1, "") sig := method.Type().(*types.Signature) methodset := c.types.MethodSet(sig.Recv().Type()) // TODO(axw) cache ordered method index var index int for i := 0; i < methodset.Len(); i++ { if methodset.At(i).Obj() == method { index = i break } } llitab = c.builder.CreateBitCast(llitab, llvm.PointerType(c.runtime.itab.llvm, 0), "") llifn := c.builder.CreateGEP(llitab, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), 5, false), // index of itab.fun }, "") _ = index llifn = c.builder.CreateGEP(llifn, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), uint64(index), false), }, "") llifn = c.builder.CreateLoad(llifn, "") // Strip receiver. sig = types.NewSignature(nil, nil, sig.Params(), sig.Results(), sig.Variadic()) llfn := llvm.Undef(c.types.ToLLVM(sig)) llifn = c.builder.CreateIntToPtr(llifn, llfn.Type().StructElementTypes()[0], "") llfn = c.builder.CreateInsertValue(llfn, llifn, 0, "") llfn = c.builder.CreateInsertValue(llfn, llvalue, 1, "") return c.NewValue(llfn, sig) }
func (tm *llvmTypeMap) basicLLVMType(b *types.Basic) llvm.Type { switch b.Kind() { case types.Bool: return llvm.Int1Type() case types.Int8, types.Uint8: return llvm.Int8Type() case types.Int16, types.Uint16: return llvm.Int16Type() case types.Int32, types.Uint32: return llvm.Int32Type() case types.Uint, types.Int: return tm.inttype case types.Int64, types.Uint64: return llvm.Int64Type() case types.Float32: return llvm.FloatType() case types.Float64: return llvm.DoubleType() case types.UnsafePointer, types.Uintptr: return tm.target.IntPtrType() case types.Complex64: f32 := llvm.FloatType() elements := []llvm.Type{f32, f32} return llvm.StructType(elements, false) case types.Complex128: f64 := llvm.DoubleType() elements := []llvm.Type{f64, f64} return llvm.StructType(elements, false) case types.String: i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{i8ptr, tm.inttype} return llvm.StructType(elements, false) } panic(fmt.Sprint("unhandled kind: ", b.Kind)) }
func (tm *TypeMap) nameRuntimeType(n *types.Named) (global, ptr llvm.Value) { name := typeString(n) path := "runtime" if pkg := n.Obj().Pkg(); pkg != nil { path = pkg.Path() } if path != tm.pkgpath { // We're not compiling the package from whence the type came, // so we'll just create a pointer to it here. global := llvm.AddGlobal(tm.module, tm.runtime.rtype.llvm, typeSymbol(name)) global.SetInitializer(llvm.ConstNull(tm.runtime.rtype.llvm)) global.SetLinkage(llvm.CommonLinkage) return global, global } // If the underlying type is Basic, then we always create // a new global. Otherwise, we clone the value returned // from toRuntime in case it is cached and reused. underlying := n.Underlying() if basic, ok := underlying.(*types.Basic); ok { global, ptr = tm.basicRuntimeType(basic, true) global.SetName(typeSymbol(name)) } else { global, ptr = tm.toRuntime(underlying) clone := llvm.AddGlobal(tm.module, global.Type().ElementType(), typeSymbol(name)) clone.SetInitializer(global.Initializer()) global = clone ptr = llvm.ConstBitCast(global, llvm.PointerType(tm.runtime.rtype.llvm, 0)) } global.SetLinkage(llvm.ExternalLinkage) // Locate the rtype. underlyingRuntimeType := global.Initializer() rtype := underlyingRuntimeType if rtype.Type() != tm.runtime.rtype.llvm { rtype = llvm.ConstExtractValue(rtype, []uint32{0}) } // Insert the uncommon type. uncommonTypeInit := tm.uncommonType(n, nil) uncommonType := llvm.AddGlobal(tm.module, uncommonTypeInit.Type(), "") uncommonType.SetInitializer(uncommonTypeInit) rtype = llvm.ConstInsertValue(rtype, uncommonType, []uint32{9}) // Replace the rtype's string representation with the one from // uncommonType. XXX should we have the package name prepended? Probably. namePtr := llvm.ConstExtractValue(uncommonTypeInit, []uint32{0}) rtype = llvm.ConstInsertValue(rtype, namePtr, []uint32{8}) // Update the global's initialiser. Note that we take a copy // of the underlying type; we're not updating a shared type. if underlyingRuntimeType.Type() != tm.runtime.rtype.llvm { underlyingRuntimeType = llvm.ConstInsertValue(underlyingRuntimeType, rtype, []uint32{0}) } else { underlyingRuntimeType = rtype } global.SetInitializer(underlyingRuntimeType) return global, ptr }
// coerce yields a value of the the type specified, initialised // to the exact bit pattern as in the specified value. // // Note: the value's type and the specified target type must have // the same size. If the source is an aggregate, then the target // must also be an aggregate with the same number of fields, each // of which must have the same size. func coerce(b llvm.Builder, v llvm.Value, t llvm.Type) llvm.Value { // FIXME don't do this with alloca switch t.TypeKind() { case llvm.ArrayTypeKind, llvm.StructTypeKind: ptr := b.CreateAlloca(t, "") ptrv := b.CreateBitCast(ptr, llvm.PointerType(v.Type(), 0), "") b.CreateStore(v, ptrv) return b.CreateLoad(ptr, "") } vt := v.Type() switch vt.TypeKind() { case llvm.ArrayTypeKind, llvm.StructTypeKind: ptr := b.CreateAlloca(vt, "") b.CreateStore(v, ptr) ptrt := b.CreateBitCast(ptr, llvm.PointerType(t, 0), "") return b.CreateLoad(ptrt, "") } return b.CreateBitCast(v, t, "") }
func getPrintf(module llvm.Module) llvm.Value { printf := module.NamedFunction("printf") if printf.IsNil() { charPtr := llvm.PointerType(llvm.Int8Type(), 0) ftyp := llvm.FunctionType(llvm.Int32Type(), []llvm.Type{charPtr}, true) printf = llvm.AddFunction(module, "printf", ftyp) printf.SetFunctionCallConv(llvm.CCallConv) } return printf }
func getFflush(module llvm.Module) llvm.Value { fflush := module.NamedFunction("fflush") if fflush.IsNil() { voidPtr := llvm.PointerType(llvm.Int8Type(), 0) ftyp := llvm.FunctionType(llvm.Int32Type(), []llvm.Type{voidPtr}, false) fflush = llvm.AddFunction(module, "fflush", ftyp) fflush.SetFunctionCallConv(llvm.CCallConv) } return fflush }
// globalStringPtr returns a *string with the specified value. func (tm *TypeMap) globalStringPtr(value string) llvm.Value { strval := llvm.ConstString(value, false) strglobal := llvm.AddGlobal(tm.module, strval.Type(), "") strglobal.SetInitializer(strval) strglobal = llvm.ConstBitCast(strglobal, llvm.PointerType(llvm.Int8Type(), 0)) strlen := llvm.ConstInt(tm.inttype, uint64(len(value)), false) str := llvm.ConstStruct([]llvm.Value{strglobal, strlen}, false) g := llvm.AddGlobal(tm.module, str.Type(), "") g.SetInitializer(str) return g }
func (tm *llvmTypeMap) sliceLLVMType(s *types.Slice, name string) llvm.Type { typ, ok := tm.types.At(s).(llvm.Type) if !ok { typ = llvm.GlobalContext().StructCreateNamed(name) tm.types.Set(s, typ) elements := []llvm.Type{ llvm.PointerType(tm.ToLLVM(s.Elem()), 0), tm.inttype, tm.inttype, } typ.StructSetBody(elements, false) } return typ }
func (tm *llvmTypeMap) interfaceLLVMType(i *types.Interface, name string) llvm.Type { if typ, ok := tm.types.At(i).(llvm.Type); ok { return typ } // interface{} is represented as {type, value}, // and non-empty interfaces are represented as {itab, value}. i8ptr := llvm.PointerType(llvm.Int8Type(), 0) rtypeType := i8ptr valueType := i8ptr if name == "" { name = i.String() } typ := llvm.GlobalContext().StructCreateNamed(name) typ.StructSetBody([]llvm.Type{rtypeType, valueType}, false) return typ }
// makeClosure creates a closure from a function pointer and // a set of bindings. The bindings are addresses of captured // variables. func (c *compiler) makeClosure(fn *LLVMValue, bindings []*LLVMValue) *LLVMValue { types := make([]llvm.Type, len(bindings)) for i, binding := range bindings { types[i] = c.types.ToLLVM(binding.Type()) } block := c.createTypeMalloc(llvm.StructType(types, false)) for i, binding := range bindings { addressPtr := c.builder.CreateStructGEP(block, i, "") c.builder.CreateStore(binding.LLVMValue(), addressPtr) } block = c.builder.CreateBitCast(block, llvm.PointerType(llvm.Int8Type(), 0), "") // fn is a raw function pointer; ToLLVM yields {*fn, *uint8}. closure := llvm.Undef(c.types.ToLLVM(fn.Type())) fnptr := c.builder.CreateBitCast(fn.LLVMValue(), closure.Type().StructElementTypes()[0], "") closure = c.builder.CreateInsertValue(closure, fnptr, 0, "") closure = c.builder.CreateInsertValue(closure, block, 1, "") return c.NewValue(closure, fn.Type()) }
func newAlgorithmMap(m llvm.Module, runtime *runtimeInterface, target llvm.TargetData) *algorithmMap { am := &algorithmMap{ module: m, runtime: runtime, } uintptrType := target.IntPtrType() voidPtrType := llvm.PointerType(llvm.Int8Type(), 0) boolType := llvm.Int1Type() params := []llvm.Type{uintptrType, voidPtrType} am.hashAlgFunctionType = llvm.FunctionType(uintptrType, params, false) params = []llvm.Type{uintptrType, uintptrType, uintptrType} am.equalAlgFunctionType = llvm.FunctionType(boolType, params, false) params = []llvm.Type{uintptrType, voidPtrType} am.printAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) params = []llvm.Type{uintptrType, voidPtrType, voidPtrType} am.copyAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) return am }
// makeLiteralSlice allocates a new slice, storing in it the provided elements. func (c *compiler) makeLiteralSlice(v []llvm.Value, elttyp types.Type) llvm.Value { n := llvm.ConstInt(c.types.inttype, uint64(len(v)), false) eltType := c.types.ToLLVM(elttyp) arrayType := llvm.ArrayType(eltType, len(v)) mem := c.createMalloc(llvm.SizeOf(arrayType)) mem = c.builder.CreateIntToPtr(mem, llvm.PointerType(eltType, 0), "") for i, value := range v { indices := []llvm.Value{llvm.ConstInt(llvm.Int32Type(), uint64(i), false)} ep := c.builder.CreateGEP(mem, indices, "") c.builder.CreateStore(value, ep) } slicetyp := types.NewSlice(elttyp) struct_ := llvm.Undef(c.types.ToLLVM(slicetyp)) struct_ = c.builder.CreateInsertValue(struct_, mem, 0, "") struct_ = c.builder.CreateInsertValue(struct_, n, 1, "") struct_ = c.builder.CreateInsertValue(struct_, n, 2, "") return struct_ }
func (u *unit) resolveFunction(f *ssa.Function) *LLVMValue { if v, ok := u.globals[f]; ok { return v } name := f.String() if f.Enclosing != nil { // Anonymous functions are not guaranteed to // have unique identifiers at the global scope. name = f.Enclosing.String() + ":" + name } // It's possible that the function already exists in the module; // for example, if it's a runtime intrinsic that the compiler // has already referenced. llvmFunction := u.module.Module.NamedFunction(name) if llvmFunction.IsNil() { llvmType := u.llvmtypes.ToLLVM(f.Signature) llvmType = llvmType.StructElementTypes()[0].ElementType() if len(f.FreeVars) > 0 { // Add an implicit first argument. returnType := llvmType.ReturnType() paramTypes := llvmType.ParamTypes() vararg := llvmType.IsFunctionVarArg() blockElementTypes := make([]llvm.Type, len(f.FreeVars)) for i, fv := range f.FreeVars { blockElementTypes[i] = u.llvmtypes.ToLLVM(fv.Type()) } blockType := llvm.StructType(blockElementTypes, false) blockPtrType := llvm.PointerType(blockType, 0) paramTypes = append([]llvm.Type{blockPtrType}, paramTypes...) llvmType = llvm.FunctionType(returnType, paramTypes, vararg) } llvmFunction = llvm.AddFunction(u.module.Module, name, llvmType) if f.Enclosing != nil { llvmFunction.SetLinkage(llvm.PrivateLinkage) } u.undefinedFuncs[f] = true } v := u.NewValue(llvmFunction, f.Signature) u.globals[f] = v return v }
func (c *compiler) getBoolString(v llvm.Value) llvm.Value { startBlock := c.builder.GetInsertBlock() resultBlock := llvm.InsertBasicBlock(startBlock, "") resultBlock.MoveAfter(startBlock) falseBlock := llvm.InsertBasicBlock(resultBlock, "") CharPtr := llvm.PointerType(llvm.Int8Type(), 0) falseString := c.builder.CreateGlobalStringPtr("false", "") falseString = c.builder.CreateBitCast(falseString, CharPtr, "") trueString := c.builder.CreateGlobalStringPtr("true", "") trueString = c.builder.CreateBitCast(trueString, CharPtr, "") c.builder.CreateCondBr(v, resultBlock, falseBlock) c.builder.SetInsertPointAtEnd(falseBlock) c.builder.CreateBr(resultBlock) c.builder.SetInsertPointAtEnd(resultBlock) result := c.builder.CreatePHI(CharPtr, "") result.AddIncoming([]llvm.Value{trueString, falseString}, []llvm.BasicBlock{startBlock, falseBlock}) return result }
// createCall emits the code for a function call, // taking into account receivers, and panic/defer. func (c *compiler) createCall(fn *LLVMValue, argValues []*LLVMValue) *LLVMValue { fntyp := fn.Type().Underlying().(*types.Signature) args := make([]llvm.Value, len(argValues)) for i, arg := range argValues { args[i] = arg.LLVMValue() } var resultType types.Type switch results := fntyp.Results(); results.Len() { case 0: // no-op case 1: resultType = results.At(0).Type() default: resultType = results } // Builtins are represented as a raw function pointer. fnval := fn.LLVMValue() if fnval.Type().TypeKind() == llvm.PointerTypeKind { return c.NewValue(c.builder.CreateCall(fnval, args, ""), resultType) } // If context is constant null, then the function does // not need a context argument. fnptr := c.builder.CreateExtractValue(fnval, 0, "") context := c.builder.CreateExtractValue(fnval, 1, "") llfntyp := fnptr.Type().ElementType() paramTypes := llfntyp.ParamTypes() if context.IsNull() { return c.NewValue(c.builder.CreateCall(fnptr, args, ""), resultType) } llfntyp = llvm.FunctionType( llfntyp.ReturnType(), append([]llvm.Type{context.Type()}, paramTypes...), llfntyp.IsFunctionVarArg(), ) fnptr = c.builder.CreateBitCast(fnptr, llvm.PointerType(llfntyp, 0), "") result := c.builder.CreateCall(fnptr, append([]llvm.Value{context}, args...), "") return c.NewValue(result, resultType) }
func (tm *TypeMap) interfaceFuncWrapper(f llvm.Value) llvm.Value { ftyp := f.Type().ElementType() paramTypes := ftyp.ParamTypes() recvType := paramTypes[0] paramTypes[0] = llvm.PointerType(llvm.Int8Type(), 0) newf := llvm.AddFunction(f.GlobalParent(), f.Name()+".ifn", llvm.FunctionType( ftyp.ReturnType(), paramTypes, ftyp.IsFunctionVarArg(), )) b := llvm.GlobalContext().NewBuilder() defer b.Dispose() entry := llvm.AddBasicBlock(newf, "entry") b.SetInsertPointAtEnd(entry) args := make([]llvm.Value, len(paramTypes)) for i := range paramTypes { args[i] = newf.Param(i) } recvBits := int(tm.target.TypeSizeInBits(recvType)) if recvBits > 0 { args[0] = b.CreatePtrToInt(args[0], tm.target.IntPtrType(), "") if args[0].Type().IntTypeWidth() > recvBits { args[0] = b.CreateTrunc(args[0], llvm.IntType(recvBits), "") } args[0] = coerce(b, args[0], recvType) } else { args[0] = llvm.ConstNull(recvType) } result := b.CreateCall(f, args, "") if result.Type().TypeKind() == llvm.VoidTypeKind { b.CreateRetVoid() } else { b.CreateRet(result) } return newf }
func (u *unit) defineFunction(f *ssa.Function) { // Nothing to do for functions without bodies. if len(f.Blocks) == 0 { return } // Only define functions from this package. if f.Pkg == nil { if r := f.Signature.Recv(); r != nil { if r.Pkg() != nil && r.Pkg() != u.pkg.Object { return } else if named, ok := r.Type().(*types.Named); ok && named.Obj().Parent() == types.Universe { // This condition is true iff f is error.Error. if u.pkg.Object.Path() != "runtime" { return } } } } else if f.Pkg != u.pkg { return } fr := frame{ unit: u, blocks: make([]llvm.BasicBlock, len(f.Blocks)), env: make(map[ssa.Value]*LLVMValue), } fr.logf("Define function: %s", f.String()) llvmFunction := fr.resolveFunction(f).LLVMValue() delete(u.undefinedFuncs, f) // Push the function onto the debug context. // TODO(axw) create a fake CU for synthetic functions if u.GenerateDebug && f.Synthetic == "" { u.debug.pushFunctionContext(llvmFunction, f.Signature, f.Pos()) defer u.debug.popFunctionContext() u.debug.setLocation(u.builder, f.Pos()) } // Functions that call recover must not be inlined, or we // can't tell whether the recover call is valid at runtime. if f.Recover != nil { llvmFunction.AddFunctionAttr(llvm.NoInlineAttribute) } for i, block := range f.Blocks { fr.blocks[i] = llvm.AddBasicBlock(llvmFunction, fmt.Sprintf(".%d.%s", i, block.Comment)) } fr.builder.SetInsertPointAtEnd(fr.blocks[0]) var paramOffset int if len(f.FreeVars) > 0 { // Extract captures from the first implicit parameter. arg0 := llvmFunction.Param(0) for i, fv := range f.FreeVars { addressPtr := fr.builder.CreateStructGEP(arg0, i, "") address := fr.builder.CreateLoad(addressPtr, "") fr.env[fv] = fr.NewValue(address, fv.Type()) } paramOffset++ } // Map parameter positions to indices. We use this // when processing locals to map back to parameters // when generating debug metadata. paramPos := make(map[token.Pos]int) for i, param := range f.Params { paramPos[param.Pos()] = i + paramOffset llparam := llvmFunction.Param(i + paramOffset) fr.env[param] = fr.NewValue(llparam, param.Type()) } // Allocate stack space for locals in the prologue block. prologueBlock := llvm.InsertBasicBlock(fr.blocks[0], "prologue") fr.builder.SetInsertPointAtEnd(prologueBlock) for _, local := range f.Locals { typ := fr.llvmtypes.ToLLVM(deref(local.Type())) alloca := fr.builder.CreateAlloca(typ, local.Comment) u.memsetZero(alloca, llvm.SizeOf(typ)) value := fr.NewValue(alloca, local.Type()) fr.env[local] = value if fr.GenerateDebug { paramIndex, ok := paramPos[local.Pos()] if !ok { paramIndex = -1 } fr.debug.declare(fr.builder, local, alloca, paramIndex) } } // Move any allocs relating to named results from the entry block // to the prologue block, so they dominate the rundefers and recover // blocks. // // TODO(axw) ask adonovan for a cleaner way of doing this, e.g. // have ssa generate an entry block that defines Allocs and related // stores, and then a separate block for function body instructions. if f.Synthetic == "" { if results := f.Signature.Results(); results != nil { for i := 0; i < results.Len(); i++ { result := results.At(i) if result.Name() == "" { break } for i, instr := range f.Blocks[0].Instrs { if instr, ok := instr.(*ssa.Alloc); ok && instr.Heap && instr.Pos() == result.Pos() { fr.instruction(instr) instrs := f.Blocks[0].Instrs instrs = append(instrs[:i], instrs[i+1:]...) f.Blocks[0].Instrs = instrs break } } } } } // If the function contains any defers, we must first call // setjmp so we can call rundefers in response to a panic. // We can short-circuit the check for defers with // f.Recover != nil. if f.Recover != nil || hasDefer(f) { rdblock := llvm.AddBasicBlock(llvmFunction, "rundefers") defers := fr.builder.CreateAlloca(fr.runtime.defers.llvm, "") fr.builder.CreateCall(fr.runtime.initdefers.LLVMValue(), []llvm.Value{defers}, "") jb := fr.builder.CreateStructGEP(defers, 0, "") jb = fr.builder.CreateBitCast(jb, llvm.PointerType(llvm.Int8Type(), 0), "") result := fr.builder.CreateCall(fr.runtime.setjmp.LLVMValue(), []llvm.Value{jb}, "") result = fr.builder.CreateIsNotNull(result, "") fr.builder.CreateCondBr(result, rdblock, fr.blocks[0]) // We'll only get here via a panic, which must either be // recovered or continue panicking up the stack without // returning from "rundefers". The recover block may be // nil even if we can recover, in which case we just need // to return the zero value for each result (if any). var recoverBlock llvm.BasicBlock if f.Recover != nil { recoverBlock = fr.block(f.Recover) } else { recoverBlock = llvm.AddBasicBlock(llvmFunction, "recover") fr.builder.SetInsertPointAtEnd(recoverBlock) var nresults int results := f.Signature.Results() if results != nil { nresults = results.Len() } switch nresults { case 0: fr.builder.CreateRetVoid() case 1: fr.builder.CreateRet(llvm.ConstNull(fr.llvmtypes.ToLLVM(results.At(0).Type()))) default: values := make([]llvm.Value, nresults) for i := range values { values[i] = llvm.ConstNull(fr.llvmtypes.ToLLVM(results.At(i).Type())) } fr.builder.CreateAggregateRet(values) } } fr.builder.SetInsertPointAtEnd(rdblock) fr.builder.CreateCall(fr.runtime.rundefers.LLVMValue(), nil, "") fr.builder.CreateBr(recoverBlock) } else { fr.builder.CreateBr(fr.blocks[0]) } for i, block := range f.Blocks { fr.translateBlock(block, fr.blocks[i]) } }
func (fr *frame) instruction(instr ssa.Instruction) { fr.logf("[%T] %v @ %s\n", instr, instr, fr.pkg.Prog.Fset.Position(instr.Pos())) if fr.GenerateDebug { fr.debug.setLocation(fr.builder, instr.Pos()) } // Check if we'll need to backpatch; see comment // in fr.value(). if v, ok := instr.(ssa.Value); ok { if b := fr.backpatcher(v); b != nil { defer b() } } switch instr := instr.(type) { case *ssa.Alloc: typ := fr.llvmtypes.ToLLVM(deref(instr.Type())) var value llvm.Value if instr.Heap { value = fr.createTypeMalloc(typ) value.SetName(instr.Comment) fr.env[instr] = fr.NewValue(value, instr.Type()) } else { value = fr.env[instr].LLVMValue() } fr.memsetZero(value, llvm.SizeOf(typ)) case *ssa.BinOp: lhs, rhs := fr.value(instr.X), fr.value(instr.Y) fr.env[instr] = lhs.BinaryOp(instr.Op, rhs).(*LLVMValue) case *ssa.Call: fn, args, result := fr.prepareCall(instr) // Some builtins may only be used immediately, and not // deferred; in this case, "fn" will be nil, and result // may be non-nil (it will be nil for builtins without // results.) if fn == nil { if result != nil { fr.env[instr] = result } } else { result = fr.createCall(fn, args) fr.env[instr] = result } case *ssa.ChangeInterface: x := fr.value(instr.X) // The source type must be a non-empty interface, // as ChangeInterface cannot fail (E2I may fail). if instr.Type().Underlying().(*types.Interface).NumMethods() > 0 { // TODO(axw) optimisation for I2I case where we // know statically the methods to carry over. x = x.convertI2E() x, _ = x.convertE2I(instr.Type()) } else { x = x.convertI2E() x = fr.NewValue(x.LLVMValue(), instr.Type()) } fr.env[instr] = x case *ssa.ChangeType: value := fr.value(instr.X).LLVMValue() if _, ok := instr.Type().Underlying().(*types.Pointer); ok { value = fr.builder.CreateBitCast(value, fr.llvmtypes.ToLLVM(instr.Type()), "") } v := fr.NewValue(value, instr.Type()) if _, ok := instr.X.(*ssa.Phi); ok { v = phiValue(fr.compiler, v) } fr.env[instr] = v case *ssa.Convert: v := fr.value(instr.X) if _, ok := instr.X.(*ssa.Phi); ok { v = phiValue(fr.compiler, v) } fr.env[instr] = v.Convert(instr.Type()).(*LLVMValue) //case *ssa.DebugRef: case *ssa.Defer: fn, args, result := fr.prepareCall(instr) if result != nil { panic("illegal use of builtin in defer statement") } fn = fr.indirectFunction(fn, args) fr.createCall(fr.runtime.pushdefer, []*LLVMValue{fn}) case *ssa.Extract: tuple := fr.value(instr.Tuple).LLVMValue() elem := fr.builder.CreateExtractValue(tuple, instr.Index, instr.Name()) elemtyp := instr.Type() fr.env[instr] = fr.NewValue(elem, elemtyp) case *ssa.Field: value := fr.value(instr.X).LLVMValue() field := fr.builder.CreateExtractValue(value, instr.Field, instr.Name()) fieldtyp := instr.Type() fr.env[instr] = fr.NewValue(field, fieldtyp) case *ssa.FieldAddr: // TODO: implement nil check and panic. // TODO: combine a chain of {Field,Index}Addrs into a single GEP. ptr := fr.value(instr.X).LLVMValue() fieldptr := fr.builder.CreateStructGEP(ptr, instr.Field, instr.Name()) fieldptrtyp := instr.Type() fr.env[instr] = fr.NewValue(fieldptr, fieldptrtyp) case *ssa.Go: fn, args, result := fr.prepareCall(instr) if result != nil { panic("illegal use of builtin in go statement") } fn = fr.indirectFunction(fn, args) fr.createCall(fr.runtime.Go, []*LLVMValue{fn}) case *ssa.If: cond := fr.value(instr.Cond).LLVMValue() block := instr.Block() trueBlock := fr.block(block.Succs[0]) falseBlock := fr.block(block.Succs[1]) fr.builder.CreateCondBr(cond, trueBlock, falseBlock) case *ssa.Index: // FIXME Surely we should be dealing with an // *array, so we can do a GEP? array := fr.value(instr.X).LLVMValue() arrayptr := fr.builder.CreateAlloca(array.Type(), "") fr.builder.CreateStore(array, arrayptr) index := fr.value(instr.Index).LLVMValue() zero := llvm.ConstNull(index.Type()) addr := fr.builder.CreateGEP(arrayptr, []llvm.Value{zero, index}, "") fr.env[instr] = fr.NewValue(fr.builder.CreateLoad(addr, ""), instr.Type()) case *ssa.IndexAddr: // TODO: implement nil-check and panic. // TODO: combine a chain of {Field,Index}Addrs into a single GEP. x := fr.value(instr.X).LLVMValue() index := fr.value(instr.Index).LLVMValue() var addr llvm.Value var elemtyp types.Type zero := llvm.ConstNull(index.Type()) switch typ := instr.X.Type().Underlying().(type) { case *types.Slice: elemtyp = typ.Elem() x = fr.builder.CreateExtractValue(x, 0, "") addr = fr.builder.CreateGEP(x, []llvm.Value{index}, "") case *types.Pointer: // *array elemtyp = typ.Elem().Underlying().(*types.Array).Elem() addr = fr.builder.CreateGEP(x, []llvm.Value{zero, index}, "") } fr.env[instr] = fr.NewValue(addr, types.NewPointer(elemtyp)) case *ssa.Jump: succ := instr.Block().Succs[0] fr.builder.CreateBr(fr.block(succ)) case *ssa.Lookup: x := fr.value(instr.X) index := fr.value(instr.Index) if isString(x.Type().Underlying()) { fr.env[instr] = fr.stringIndex(x, index) } else { fr.env[instr] = fr.mapLookup(x, index, instr.CommaOk) } case *ssa.MakeChan: fr.env[instr] = fr.makeChan(instr.Type(), fr.value(instr.Size)) case *ssa.MakeClosure: fn := fr.resolveFunction(instr.Fn.(*ssa.Function)) bindings := make([]*LLVMValue, len(instr.Bindings)) for i, binding := range instr.Bindings { bindings[i] = fr.value(binding) } fr.env[instr] = fr.makeClosure(fn, bindings) case *ssa.MakeInterface: receiver := fr.value(instr.X) fr.env[instr] = fr.makeInterface(receiver, instr.Type()) case *ssa.MakeMap: fr.env[instr] = fr.makeMap(instr.Type(), fr.value(instr.Reserve)) case *ssa.MakeSlice: length := fr.value(instr.Len) capacity := fr.value(instr.Cap) fr.env[instr] = fr.makeSlice(instr.Type(), length, capacity) case *ssa.MapUpdate: m := fr.value(instr.Map) k := fr.value(instr.Key) v := fr.value(instr.Value) fr.mapUpdate(m, k, v) case *ssa.Next: iter := fr.value(instr.Iter) if !instr.IsString { fr.env[instr] = fr.mapIterNext(iter) return } // String range // // We make some assumptions for now around the // current state of affairs in go.tools/ssa. // // - Range's block is a predecessor of Next's. // (this is currently true, but may change in the future; // adonovan says he will expose the dominator tree // computation in the future, which we can use here). // - Next is the first non-Phi instruction in its block. // (this is not strictly necessary; we can move the Phi // to the top of the block, and defer the tuple creation // to Extract). assert(instr.Iter.(*ssa.Range).Block() == instr.Block().Preds[0]) for _, blockInstr := range instr.Block().Instrs { if instr == blockInstr { break } _, isphi := blockInstr.(*ssa.Phi) assert(isphi) } preds := instr.Block().Preds llpreds := make([]llvm.BasicBlock, len(preds)) for i, b := range preds { llpreds[i] = fr.block(b) } fr.env[instr] = fr.stringIterNext(iter, llpreds) case *ssa.Panic: arg := fr.value(instr.X).LLVMValue() fr.builder.CreateCall(fr.runtime.panic_.LLVMValue(), []llvm.Value{arg}, "") fr.builder.CreateUnreachable() case *ssa.Phi: typ := instr.Type() phi := fr.builder.CreatePHI(fr.llvmtypes.ToLLVM(typ), instr.Comment) fr.env[instr] = fr.NewValue(phi, typ) values := make([]llvm.Value, len(instr.Edges)) blocks := make([]llvm.BasicBlock, len(instr.Edges)) block := instr.Block() for i, edge := range instr.Edges { values[i] = fr.value(edge).LLVMValue() blocks[i] = fr.block(block.Preds[i]) } phi.AddIncoming(values, blocks) case *ssa.Range: x := fr.value(instr.X) switch x.Type().Underlying().(type) { case *types.Map: fr.env[instr] = fr.mapIterInit(x) case *types.Basic: // string fr.env[instr] = x default: panic(fmt.Sprintf("unhandled range for type %T", x.Type())) } case *ssa.Return: switch n := len(instr.Results); n { case 0: // https://code.google.com/p/go/issues/detail?id=7022 if r := instr.Parent().Signature.Results(); r != nil && r.Len() > 0 { fr.builder.CreateUnreachable() } else { fr.builder.CreateRetVoid() } case 1: fr.builder.CreateRet(fr.value(instr.Results[0]).LLVMValue()) default: values := make([]llvm.Value, n) for i, result := range instr.Results { values[i] = fr.value(result).LLVMValue() } fr.builder.CreateAggregateRet(values) } case *ssa.RunDefers: fr.builder.CreateCall(fr.runtime.rundefers.LLVMValue(), nil, "") case *ssa.Select: states := make([]selectState, len(instr.States)) for i, state := range instr.States { states[i] = selectState{ Dir: state.Dir, Chan: fr.value(state.Chan), Send: fr.value(state.Send), } } fr.env[instr] = fr.chanSelect(states, instr.Blocking) case *ssa.Send: fr.chanSend(fr.value(instr.Chan), fr.value(instr.X)) case *ssa.Slice: x := fr.value(instr.X) low := fr.value(instr.Low) high := fr.value(instr.High) fr.env[instr] = fr.slice(x, low, high) case *ssa.Store: addr := fr.value(instr.Addr).LLVMValue() value := fr.value(instr.Val).LLVMValue() // The bitcast is necessary to handle recursive pointer stores. addr = fr.builder.CreateBitCast(addr, llvm.PointerType(value.Type(), 0), "") fr.builder.CreateStore(value, addr) case *ssa.TypeAssert: x := fr.value(instr.X) if iface, ok := x.Type().Underlying().(*types.Interface); ok && iface.NumMethods() > 0 { x = x.convertI2E() } if !instr.CommaOk { if _, ok := instr.AssertedType.Underlying().(*types.Interface); ok { fr.env[instr] = x.mustConvertE2I(instr.AssertedType) } else { fr.env[instr] = x.mustConvertE2V(instr.AssertedType) } } else { var result, success *LLVMValue if _, ok := instr.AssertedType.Underlying().(*types.Interface); ok { result, success = x.convertE2I(instr.AssertedType) } else { result, success = x.convertE2V(instr.AssertedType) } resultval := result.LLVMValue() okval := success.LLVMValue() pairtyp := llvm.StructType([]llvm.Type{resultval.Type(), okval.Type()}, false) pair := llvm.Undef(pairtyp) pair = fr.builder.CreateInsertValue(pair, resultval, 0, "") pair = fr.builder.CreateInsertValue(pair, okval, 1, "") fr.env[instr] = fr.NewValue(pair, instr.Type()) } case *ssa.UnOp: operand := fr.value(instr.X) switch instr.Op { case token.ARROW: fr.env[instr] = fr.chanRecv(operand, instr.CommaOk) case token.MUL: // The bitcast is necessary to handle recursive pointer loads. llptr := fr.builder.CreateBitCast(operand.LLVMValue(), llvm.PointerType(fr.llvmtypes.ToLLVM(instr.Type()), 0), "") fr.env[instr] = fr.NewValue(fr.builder.CreateLoad(llptr, ""), instr.Type()) default: fr.env[instr] = operand.UnaryOp(instr.Op).(*LLVMValue) } default: panic(fmt.Sprintf("unhandled: %v", instr)) } }
func (c *compiler) NewConstValue(v exact.Value, typ types.Type) *LLVMValue { switch { case v == nil: llvmtyp := c.types.ToLLVM(typ) return c.NewValue(llvm.ConstNull(llvmtyp), typ) case isString(typ): if isUntyped(typ) { typ = types.Typ[types.String] } llvmtyp := c.types.ToLLVM(typ) strval := exact.StringVal(v) strlen := len(strval) i8ptr := llvm.PointerType(llvm.Int8Type(), 0) var ptr llvm.Value if strlen > 0 { init := llvm.ConstString(strval, false) ptr = llvm.AddGlobal(c.module.Module, init.Type(), "") ptr.SetInitializer(init) ptr = llvm.ConstBitCast(ptr, i8ptr) } else { ptr = llvm.ConstNull(i8ptr) } len_ := llvm.ConstInt(c.types.inttype, uint64(strlen), false) llvmvalue := llvm.Undef(llvmtyp) llvmvalue = llvm.ConstInsertValue(llvmvalue, ptr, []uint32{0}) llvmvalue = llvm.ConstInsertValue(llvmvalue, len_, []uint32{1}) return c.NewValue(llvmvalue, typ) case isInteger(typ): if isUntyped(typ) { typ = types.Typ[types.Int] } llvmtyp := c.types.ToLLVM(typ) var llvmvalue llvm.Value if isUnsigned(typ) { v, _ := exact.Uint64Val(v) llvmvalue = llvm.ConstInt(llvmtyp, v, false) } else { v, _ := exact.Int64Val(v) llvmvalue = llvm.ConstInt(llvmtyp, uint64(v), true) } return c.NewValue(llvmvalue, typ) case isBoolean(typ): if isUntyped(typ) { typ = types.Typ[types.Bool] } var llvmvalue llvm.Value if exact.BoolVal(v) { llvmvalue = llvm.ConstAllOnes(llvm.Int1Type()) } else { llvmvalue = llvm.ConstNull(llvm.Int1Type()) } return c.NewValue(llvmvalue, typ) case isFloat(typ): if isUntyped(typ) { typ = types.Typ[types.Float64] } llvmtyp := c.types.ToLLVM(typ) floatval, _ := exact.Float64Val(v) llvmvalue := llvm.ConstFloat(llvmtyp, floatval) return c.NewValue(llvmvalue, typ) case typ == types.Typ[types.UnsafePointer]: llvmtyp := c.types.ToLLVM(typ) v, _ := exact.Uint64Val(v) llvmvalue := llvm.ConstInt(llvmtyp, v, false) return c.NewValue(llvmvalue, typ) case isComplex(typ): if isUntyped(typ) { typ = types.Typ[types.Complex128] } llvmtyp := c.types.ToLLVM(typ) floattyp := llvmtyp.StructElementTypes()[0] llvmvalue := llvm.ConstNull(llvmtyp) realv := exact.Real(v) imagv := exact.Imag(v) realfloatval, _ := exact.Float64Val(realv) imagfloatval, _ := exact.Float64Val(imagv) llvmre := llvm.ConstFloat(floattyp, realfloatval) llvmim := llvm.ConstFloat(floattyp, imagfloatval) llvmvalue = llvm.ConstInsertValue(llvmvalue, llvmre, []uint32{0}) llvmvalue = llvm.ConstInsertValue(llvmvalue, llvmim, []uint32{1}) return c.NewValue(llvmvalue, typ) } // Special case for string -> [](byte|rune) if u, ok := typ.Underlying().(*types.Slice); ok && isInteger(u.Elem()) { if v.Kind() == exact.String { strval := c.NewConstValue(v, types.Typ[types.String]) return strval.Convert(typ).(*LLVMValue) } } panic(fmt.Sprintf("unhandled: t=%s(%T), v=%v(%T)", typ, typ, v, v)) }
func (tm *llvmTypeMap) pointerLLVMType(p *types.Pointer) llvm.Type { return llvm.PointerType(tm.ToLLVM(p.Elem()), 0) }
func (c *compiler) createTypeMalloc(t llvm.Type) llvm.Value { ptr := c.createMalloc(llvm.SizeOf(t)) return c.builder.CreateIntToPtr(ptr, llvm.PointerType(t, 0), "") }
// indirectFunction creates an indirect function from a // given function and arguments, suitable for use with // "defer" and "go". func (c *compiler) indirectFunction(fn *LLVMValue, args []*LLVMValue) *LLVMValue { nilarytyp := types.NewSignature(nil, nil, nil, nil, false) if len(args) == 0 { val := fn.LLVMValue() ptr := c.builder.CreateExtractValue(val, 0, "") ctx := c.builder.CreateExtractValue(val, 1, "") fnval := llvm.Undef(c.types.ToLLVM(nilarytyp)) ptr = c.builder.CreateBitCast(ptr, fnval.Type().StructElementTypes()[0], "") ctx = c.builder.CreateBitCast(ctx, fnval.Type().StructElementTypes()[1], "") fnval = c.builder.CreateInsertValue(fnval, ptr, 0, "") fnval = c.builder.CreateInsertValue(fnval, ctx, 1, "") return c.NewValue(fnval, nilarytyp) } // Check if function pointer or context pointer is global/null. fnval := fn.LLVMValue() fnptr := fnval var nctx int var fnctx llvm.Value var fnctxindex uint64 var globalfn bool if fnptr.Type().TypeKind() == llvm.StructTypeKind { fnptr = c.builder.CreateExtractValue(fnval, 0, "") fnctx = c.builder.CreateExtractValue(fnval, 1, "") globalfn = !fnptr.IsAFunction().IsNil() if !globalfn { nctx++ } if !fnctx.IsNull() { fnctxindex = uint64(nctx) nctx++ } } else { // We've got a raw global function pointer. Convert to <ptr,ctx>. fnval = llvm.ConstNull(c.types.ToLLVM(fn.Type())) fnval = llvm.ConstInsertValue(fnval, fnptr, []uint32{0}) fn = c.NewValue(fnval, fn.Type()) fnctx = llvm.ConstExtractValue(fnval, []uint32{1}) globalfn = true } i8ptr := llvm.PointerType(llvm.Int8Type(), 0) llvmargs := make([]llvm.Value, len(args)+nctx) llvmargtypes := make([]llvm.Type, len(args)+nctx) for i, arg := range args { llvmargs[i+nctx] = arg.LLVMValue() llvmargtypes[i+nctx] = llvmargs[i+nctx].Type() } if !globalfn { llvmargtypes[0] = fnptr.Type() llvmargs[0] = fnptr } if !fnctx.IsNull() { llvmargtypes[fnctxindex] = fnctx.Type() llvmargs[fnctxindex] = fnctx } // TODO(axw) investigate an option for go statements // to allocate argument structure on the stack in the // initiator, and block until the spawned goroutine // has loaded the arguments from it. structtyp := llvm.StructType(llvmargtypes, false) argstruct := c.createTypeMalloc(structtyp) for i, llvmarg := range llvmargs { argptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), uint64(i), false)}, "") c.builder.CreateStore(llvmarg, argptr) } // Create a function that will take a pointer to a structure of the type // defined above, or no parameters if there are none to pass. fntype := llvm.FunctionType(llvm.VoidType(), []llvm.Type{argstruct.Type()}, false) indirectfn := llvm.AddFunction(c.module.Module, "", fntype) i8argstruct := c.builder.CreateBitCast(argstruct, i8ptr, "") currblock := c.builder.GetInsertBlock() c.builder.SetInsertPointAtEnd(llvm.AddBasicBlock(indirectfn, "entry")) argstruct = indirectfn.Param(0) newargs := make([]*LLVMValue, len(args)) for i := range llvmargs[nctx:] { argptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), uint64(i+nctx), false)}, "") newargs[i] = c.NewValue(c.builder.CreateLoad(argptr, ""), args[i].Type()) } // Unless we've got a global function, extract the // function pointer from the context. if !globalfn { fnval = llvm.Undef(fnval.Type()) fnptrptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), 0, false)}, "") fnptr = c.builder.CreateLoad(fnptrptr, "") fnval = c.builder.CreateInsertValue(fnval, fnptr, 0, "") } if !fnctx.IsNull() { fnctxptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), fnctxindex, false)}, "") fnctx = c.builder.CreateLoad(fnctxptr, "") fnval = c.builder.CreateInsertValue(fnval, fnctx, 1, "") fn = c.NewValue(fnval, fn.Type()) } c.createCall(fn, newargs) // Indirect function calls' return values are always ignored. c.builder.CreateRetVoid() c.builder.SetInsertPointAtEnd(currblock) fnval = llvm.Undef(c.types.ToLLVM(nilarytyp)) indirectfn = c.builder.CreateBitCast(indirectfn, fnval.Type().StructElementTypes()[0], "") fnval = c.builder.CreateInsertValue(fnval, indirectfn, 0, "") fnval = c.builder.CreateInsertValue(fnval, i8argstruct, 1, "") fn = c.NewValue(fnval, nilarytyp) return fn }