func (tm *llvmTypeMap) basicLLVMType(b *types.Basic) llvm.Type { switch b.Kind() { case types.Bool: return llvm.Int1Type() case types.Int8, types.Uint8: return llvm.Int8Type() case types.Int16, types.Uint16: return llvm.Int16Type() case types.Int32, types.Uint32: return llvm.Int32Type() case types.Uint, types.Int: return tm.inttype case types.Int64, types.Uint64: return llvm.Int64Type() case types.Float32: return llvm.FloatType() case types.Float64: return llvm.DoubleType() case types.UnsafePointer, types.Uintptr: return tm.target.IntPtrType() case types.Complex64: f32 := llvm.FloatType() elements := []llvm.Type{f32, f32} return llvm.StructType(elements, false) case types.Complex128: f64 := llvm.DoubleType() elements := []llvm.Type{f64, f64} return llvm.StructType(elements, false) case types.String: i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{i8ptr, tm.inttype} return llvm.StructType(elements, false) } panic(fmt.Sprint("unhandled kind: ", b.Kind)) }
func (tm *llvmTypeMap) funcLLVMType(f *types.Signature, name string) llvm.Type { // If there's a receiver change the receiver to an // additional (first) parameter, and take the value of // the resulting signature instead. if recv := f.Recv(); recv != nil { params := f.Params() paramvars := make([]*types.Var, int(params.Len()+1)) paramvars[0] = recv for i := 0; i < int(params.Len()); i++ { paramvars[i+1] = params.At(i) } params = types.NewTuple(paramvars...) f := types.NewSignature(nil, nil, params, f.Results(), f.Variadic()) return tm.toLLVM(f, name) } if typ, ok := tm.types.At(f).(llvm.Type); ok { return typ } typ := llvm.GlobalContext().StructCreateNamed(name) tm.types.Set(f, typ) params := f.Params() param_types := make([]llvm.Type, params.Len()) for i := range param_types { llvmtyp := tm.ToLLVM(params.At(i).Type()) param_types[i] = llvmtyp } var return_type llvm.Type results := f.Results() switch nresults := int(results.Len()); nresults { case 0: return_type = llvm.VoidType() case 1: return_type = tm.ToLLVM(results.At(0).Type()) default: elements := make([]llvm.Type, nresults) for i := range elements { result := results.At(i) elements[i] = tm.ToLLVM(result.Type()) } return_type = llvm.StructType(elements, false) } fntyp := llvm.FunctionType(return_type, param_types, false) fnptrtyp := llvm.PointerType(fntyp, 0) i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{fnptrtyp, i8ptr} // func, closure typ.StructSetBody(elements, false) return typ }
// makeClosure creates a closure from a function pointer and // a set of bindings. The bindings are addresses of captured // variables. func (c *compiler) makeClosure(fn *LLVMValue, bindings []*LLVMValue) *LLVMValue { types := make([]llvm.Type, len(bindings)) for i, binding := range bindings { types[i] = c.types.ToLLVM(binding.Type()) } block := c.createTypeMalloc(llvm.StructType(types, false)) for i, binding := range bindings { addressPtr := c.builder.CreateStructGEP(block, i, "") c.builder.CreateStore(binding.LLVMValue(), addressPtr) } block = c.builder.CreateBitCast(block, llvm.PointerType(llvm.Int8Type(), 0), "") // fn is a raw function pointer; ToLLVM yields {*fn, *uint8}. closure := llvm.Undef(c.types.ToLLVM(fn.Type())) fnptr := c.builder.CreateBitCast(fn.LLVMValue(), closure.Type().StructElementTypes()[0], "") closure = c.builder.CreateInsertValue(closure, fnptr, 0, "") closure = c.builder.CreateInsertValue(closure, block, 1, "") return c.NewValue(closure, fn.Type()) }
func (u *unit) resolveFunction(f *ssa.Function) *LLVMValue { if v, ok := u.globals[f]; ok { return v } name := f.String() if f.Enclosing != nil { // Anonymous functions are not guaranteed to // have unique identifiers at the global scope. name = f.Enclosing.String() + ":" + name } // It's possible that the function already exists in the module; // for example, if it's a runtime intrinsic that the compiler // has already referenced. llvmFunction := u.module.Module.NamedFunction(name) if llvmFunction.IsNil() { llvmType := u.llvmtypes.ToLLVM(f.Signature) llvmType = llvmType.StructElementTypes()[0].ElementType() if len(f.FreeVars) > 0 { // Add an implicit first argument. returnType := llvmType.ReturnType() paramTypes := llvmType.ParamTypes() vararg := llvmType.IsFunctionVarArg() blockElementTypes := make([]llvm.Type, len(f.FreeVars)) for i, fv := range f.FreeVars { blockElementTypes[i] = u.llvmtypes.ToLLVM(fv.Type()) } blockType := llvm.StructType(blockElementTypes, false) blockPtrType := llvm.PointerType(blockType, 0) paramTypes = append([]llvm.Type{blockPtrType}, paramTypes...) llvmType = llvm.FunctionType(returnType, paramTypes, vararg) } llvmFunction = llvm.AddFunction(u.module.Module, name, llvmType) if f.Enclosing != nil { llvmFunction.SetLinkage(llvm.PrivateLinkage) } u.undefinedFuncs[f] = true } v := u.NewValue(llvmFunction, f.Signature) u.globals[f] = v return v }
// indirectFunction creates an indirect function from a // given function and arguments, suitable for use with // "defer" and "go". func (c *compiler) indirectFunction(fn *LLVMValue, args []*LLVMValue) *LLVMValue { nilarytyp := types.NewSignature(nil, nil, nil, nil, false) if len(args) == 0 { val := fn.LLVMValue() ptr := c.builder.CreateExtractValue(val, 0, "") ctx := c.builder.CreateExtractValue(val, 1, "") fnval := llvm.Undef(c.types.ToLLVM(nilarytyp)) ptr = c.builder.CreateBitCast(ptr, fnval.Type().StructElementTypes()[0], "") ctx = c.builder.CreateBitCast(ctx, fnval.Type().StructElementTypes()[1], "") fnval = c.builder.CreateInsertValue(fnval, ptr, 0, "") fnval = c.builder.CreateInsertValue(fnval, ctx, 1, "") return c.NewValue(fnval, nilarytyp) } // Check if function pointer or context pointer is global/null. fnval := fn.LLVMValue() fnptr := fnval var nctx int var fnctx llvm.Value var fnctxindex uint64 var globalfn bool if fnptr.Type().TypeKind() == llvm.StructTypeKind { fnptr = c.builder.CreateExtractValue(fnval, 0, "") fnctx = c.builder.CreateExtractValue(fnval, 1, "") globalfn = !fnptr.IsAFunction().IsNil() if !globalfn { nctx++ } if !fnctx.IsNull() { fnctxindex = uint64(nctx) nctx++ } } else { // We've got a raw global function pointer. Convert to <ptr,ctx>. fnval = llvm.ConstNull(c.types.ToLLVM(fn.Type())) fnval = llvm.ConstInsertValue(fnval, fnptr, []uint32{0}) fn = c.NewValue(fnval, fn.Type()) fnctx = llvm.ConstExtractValue(fnval, []uint32{1}) globalfn = true } i8ptr := llvm.PointerType(llvm.Int8Type(), 0) llvmargs := make([]llvm.Value, len(args)+nctx) llvmargtypes := make([]llvm.Type, len(args)+nctx) for i, arg := range args { llvmargs[i+nctx] = arg.LLVMValue() llvmargtypes[i+nctx] = llvmargs[i+nctx].Type() } if !globalfn { llvmargtypes[0] = fnptr.Type() llvmargs[0] = fnptr } if !fnctx.IsNull() { llvmargtypes[fnctxindex] = fnctx.Type() llvmargs[fnctxindex] = fnctx } // TODO(axw) investigate an option for go statements // to allocate argument structure on the stack in the // initiator, and block until the spawned goroutine // has loaded the arguments from it. structtyp := llvm.StructType(llvmargtypes, false) argstruct := c.createTypeMalloc(structtyp) for i, llvmarg := range llvmargs { argptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), uint64(i), false)}, "") c.builder.CreateStore(llvmarg, argptr) } // Create a function that will take a pointer to a structure of the type // defined above, or no parameters if there are none to pass. fntype := llvm.FunctionType(llvm.VoidType(), []llvm.Type{argstruct.Type()}, false) indirectfn := llvm.AddFunction(c.module.Module, "", fntype) i8argstruct := c.builder.CreateBitCast(argstruct, i8ptr, "") currblock := c.builder.GetInsertBlock() c.builder.SetInsertPointAtEnd(llvm.AddBasicBlock(indirectfn, "entry")) argstruct = indirectfn.Param(0) newargs := make([]*LLVMValue, len(args)) for i := range llvmargs[nctx:] { argptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), uint64(i+nctx), false)}, "") newargs[i] = c.NewValue(c.builder.CreateLoad(argptr, ""), args[i].Type()) } // Unless we've got a global function, extract the // function pointer from the context. if !globalfn { fnval = llvm.Undef(fnval.Type()) fnptrptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), 0, false)}, "") fnptr = c.builder.CreateLoad(fnptrptr, "") fnval = c.builder.CreateInsertValue(fnval, fnptr, 0, "") } if !fnctx.IsNull() { fnctxptr := c.builder.CreateGEP(argstruct, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), fnctxindex, false)}, "") fnctx = c.builder.CreateLoad(fnctxptr, "") fnval = c.builder.CreateInsertValue(fnval, fnctx, 1, "") fn = c.NewValue(fnval, fn.Type()) } c.createCall(fn, newargs) // Indirect function calls' return values are always ignored. c.builder.CreateRetVoid() c.builder.SetInsertPointAtEnd(currblock) fnval = llvm.Undef(c.types.ToLLVM(nilarytyp)) indirectfn = c.builder.CreateBitCast(indirectfn, fnval.Type().StructElementTypes()[0], "") fnval = c.builder.CreateInsertValue(fnval, indirectfn, 0, "") fnval = c.builder.CreateInsertValue(fnval, i8argstruct, 1, "") fn = c.NewValue(fnval, nilarytyp) return fn }
func (fr *frame) instruction(instr ssa.Instruction) { fr.logf("[%T] %v @ %s\n", instr, instr, fr.pkg.Prog.Fset.Position(instr.Pos())) if fr.GenerateDebug { fr.debug.setLocation(fr.builder, instr.Pos()) } // Check if we'll need to backpatch; see comment // in fr.value(). if v, ok := instr.(ssa.Value); ok { if b := fr.backpatcher(v); b != nil { defer b() } } switch instr := instr.(type) { case *ssa.Alloc: typ := fr.llvmtypes.ToLLVM(deref(instr.Type())) var value llvm.Value if instr.Heap { value = fr.createTypeMalloc(typ) value.SetName(instr.Comment) fr.env[instr] = fr.NewValue(value, instr.Type()) } else { value = fr.env[instr].LLVMValue() } fr.memsetZero(value, llvm.SizeOf(typ)) case *ssa.BinOp: lhs, rhs := fr.value(instr.X), fr.value(instr.Y) fr.env[instr] = lhs.BinaryOp(instr.Op, rhs).(*LLVMValue) case *ssa.Call: fn, args, result := fr.prepareCall(instr) // Some builtins may only be used immediately, and not // deferred; in this case, "fn" will be nil, and result // may be non-nil (it will be nil for builtins without // results.) if fn == nil { if result != nil { fr.env[instr] = result } } else { result = fr.createCall(fn, args) fr.env[instr] = result } case *ssa.ChangeInterface: x := fr.value(instr.X) // The source type must be a non-empty interface, // as ChangeInterface cannot fail (E2I may fail). if instr.Type().Underlying().(*types.Interface).NumMethods() > 0 { // TODO(axw) optimisation for I2I case where we // know statically the methods to carry over. x = x.convertI2E() x, _ = x.convertE2I(instr.Type()) } else { x = x.convertI2E() x = fr.NewValue(x.LLVMValue(), instr.Type()) } fr.env[instr] = x case *ssa.ChangeType: value := fr.value(instr.X).LLVMValue() if _, ok := instr.Type().Underlying().(*types.Pointer); ok { value = fr.builder.CreateBitCast(value, fr.llvmtypes.ToLLVM(instr.Type()), "") } v := fr.NewValue(value, instr.Type()) if _, ok := instr.X.(*ssa.Phi); ok { v = phiValue(fr.compiler, v) } fr.env[instr] = v case *ssa.Convert: v := fr.value(instr.X) if _, ok := instr.X.(*ssa.Phi); ok { v = phiValue(fr.compiler, v) } fr.env[instr] = v.Convert(instr.Type()).(*LLVMValue) //case *ssa.DebugRef: case *ssa.Defer: fn, args, result := fr.prepareCall(instr) if result != nil { panic("illegal use of builtin in defer statement") } fn = fr.indirectFunction(fn, args) fr.createCall(fr.runtime.pushdefer, []*LLVMValue{fn}) case *ssa.Extract: tuple := fr.value(instr.Tuple).LLVMValue() elem := fr.builder.CreateExtractValue(tuple, instr.Index, instr.Name()) elemtyp := instr.Type() fr.env[instr] = fr.NewValue(elem, elemtyp) case *ssa.Field: value := fr.value(instr.X).LLVMValue() field := fr.builder.CreateExtractValue(value, instr.Field, instr.Name()) fieldtyp := instr.Type() fr.env[instr] = fr.NewValue(field, fieldtyp) case *ssa.FieldAddr: // TODO: implement nil check and panic. // TODO: combine a chain of {Field,Index}Addrs into a single GEP. ptr := fr.value(instr.X).LLVMValue() fieldptr := fr.builder.CreateStructGEP(ptr, instr.Field, instr.Name()) fieldptrtyp := instr.Type() fr.env[instr] = fr.NewValue(fieldptr, fieldptrtyp) case *ssa.Go: fn, args, result := fr.prepareCall(instr) if result != nil { panic("illegal use of builtin in go statement") } fn = fr.indirectFunction(fn, args) fr.createCall(fr.runtime.Go, []*LLVMValue{fn}) case *ssa.If: cond := fr.value(instr.Cond).LLVMValue() block := instr.Block() trueBlock := fr.block(block.Succs[0]) falseBlock := fr.block(block.Succs[1]) fr.builder.CreateCondBr(cond, trueBlock, falseBlock) case *ssa.Index: // FIXME Surely we should be dealing with an // *array, so we can do a GEP? array := fr.value(instr.X).LLVMValue() arrayptr := fr.builder.CreateAlloca(array.Type(), "") fr.builder.CreateStore(array, arrayptr) index := fr.value(instr.Index).LLVMValue() zero := llvm.ConstNull(index.Type()) addr := fr.builder.CreateGEP(arrayptr, []llvm.Value{zero, index}, "") fr.env[instr] = fr.NewValue(fr.builder.CreateLoad(addr, ""), instr.Type()) case *ssa.IndexAddr: // TODO: implement nil-check and panic. // TODO: combine a chain of {Field,Index}Addrs into a single GEP. x := fr.value(instr.X).LLVMValue() index := fr.value(instr.Index).LLVMValue() var addr llvm.Value var elemtyp types.Type zero := llvm.ConstNull(index.Type()) switch typ := instr.X.Type().Underlying().(type) { case *types.Slice: elemtyp = typ.Elem() x = fr.builder.CreateExtractValue(x, 0, "") addr = fr.builder.CreateGEP(x, []llvm.Value{index}, "") case *types.Pointer: // *array elemtyp = typ.Elem().Underlying().(*types.Array).Elem() addr = fr.builder.CreateGEP(x, []llvm.Value{zero, index}, "") } fr.env[instr] = fr.NewValue(addr, types.NewPointer(elemtyp)) case *ssa.Jump: succ := instr.Block().Succs[0] fr.builder.CreateBr(fr.block(succ)) case *ssa.Lookup: x := fr.value(instr.X) index := fr.value(instr.Index) if isString(x.Type().Underlying()) { fr.env[instr] = fr.stringIndex(x, index) } else { fr.env[instr] = fr.mapLookup(x, index, instr.CommaOk) } case *ssa.MakeChan: fr.env[instr] = fr.makeChan(instr.Type(), fr.value(instr.Size)) case *ssa.MakeClosure: fn := fr.resolveFunction(instr.Fn.(*ssa.Function)) bindings := make([]*LLVMValue, len(instr.Bindings)) for i, binding := range instr.Bindings { bindings[i] = fr.value(binding) } fr.env[instr] = fr.makeClosure(fn, bindings) case *ssa.MakeInterface: receiver := fr.value(instr.X) fr.env[instr] = fr.makeInterface(receiver, instr.Type()) case *ssa.MakeMap: fr.env[instr] = fr.makeMap(instr.Type(), fr.value(instr.Reserve)) case *ssa.MakeSlice: length := fr.value(instr.Len) capacity := fr.value(instr.Cap) fr.env[instr] = fr.makeSlice(instr.Type(), length, capacity) case *ssa.MapUpdate: m := fr.value(instr.Map) k := fr.value(instr.Key) v := fr.value(instr.Value) fr.mapUpdate(m, k, v) case *ssa.Next: iter := fr.value(instr.Iter) if !instr.IsString { fr.env[instr] = fr.mapIterNext(iter) return } // String range // // We make some assumptions for now around the // current state of affairs in go.tools/ssa. // // - Range's block is a predecessor of Next's. // (this is currently true, but may change in the future; // adonovan says he will expose the dominator tree // computation in the future, which we can use here). // - Next is the first non-Phi instruction in its block. // (this is not strictly necessary; we can move the Phi // to the top of the block, and defer the tuple creation // to Extract). assert(instr.Iter.(*ssa.Range).Block() == instr.Block().Preds[0]) for _, blockInstr := range instr.Block().Instrs { if instr == blockInstr { break } _, isphi := blockInstr.(*ssa.Phi) assert(isphi) } preds := instr.Block().Preds llpreds := make([]llvm.BasicBlock, len(preds)) for i, b := range preds { llpreds[i] = fr.block(b) } fr.env[instr] = fr.stringIterNext(iter, llpreds) case *ssa.Panic: arg := fr.value(instr.X).LLVMValue() fr.builder.CreateCall(fr.runtime.panic_.LLVMValue(), []llvm.Value{arg}, "") fr.builder.CreateUnreachable() case *ssa.Phi: typ := instr.Type() phi := fr.builder.CreatePHI(fr.llvmtypes.ToLLVM(typ), instr.Comment) fr.env[instr] = fr.NewValue(phi, typ) values := make([]llvm.Value, len(instr.Edges)) blocks := make([]llvm.BasicBlock, len(instr.Edges)) block := instr.Block() for i, edge := range instr.Edges { values[i] = fr.value(edge).LLVMValue() blocks[i] = fr.block(block.Preds[i]) } phi.AddIncoming(values, blocks) case *ssa.Range: x := fr.value(instr.X) switch x.Type().Underlying().(type) { case *types.Map: fr.env[instr] = fr.mapIterInit(x) case *types.Basic: // string fr.env[instr] = x default: panic(fmt.Sprintf("unhandled range for type %T", x.Type())) } case *ssa.Return: switch n := len(instr.Results); n { case 0: // https://code.google.com/p/go/issues/detail?id=7022 if r := instr.Parent().Signature.Results(); r != nil && r.Len() > 0 { fr.builder.CreateUnreachable() } else { fr.builder.CreateRetVoid() } case 1: fr.builder.CreateRet(fr.value(instr.Results[0]).LLVMValue()) default: values := make([]llvm.Value, n) for i, result := range instr.Results { values[i] = fr.value(result).LLVMValue() } fr.builder.CreateAggregateRet(values) } case *ssa.RunDefers: fr.builder.CreateCall(fr.runtime.rundefers.LLVMValue(), nil, "") case *ssa.Select: states := make([]selectState, len(instr.States)) for i, state := range instr.States { states[i] = selectState{ Dir: state.Dir, Chan: fr.value(state.Chan), Send: fr.value(state.Send), } } fr.env[instr] = fr.chanSelect(states, instr.Blocking) case *ssa.Send: fr.chanSend(fr.value(instr.Chan), fr.value(instr.X)) case *ssa.Slice: x := fr.value(instr.X) low := fr.value(instr.Low) high := fr.value(instr.High) fr.env[instr] = fr.slice(x, low, high) case *ssa.Store: addr := fr.value(instr.Addr).LLVMValue() value := fr.value(instr.Val).LLVMValue() // The bitcast is necessary to handle recursive pointer stores. addr = fr.builder.CreateBitCast(addr, llvm.PointerType(value.Type(), 0), "") fr.builder.CreateStore(value, addr) case *ssa.TypeAssert: x := fr.value(instr.X) if iface, ok := x.Type().Underlying().(*types.Interface); ok && iface.NumMethods() > 0 { x = x.convertI2E() } if !instr.CommaOk { if _, ok := instr.AssertedType.Underlying().(*types.Interface); ok { fr.env[instr] = x.mustConvertE2I(instr.AssertedType) } else { fr.env[instr] = x.mustConvertE2V(instr.AssertedType) } } else { var result, success *LLVMValue if _, ok := instr.AssertedType.Underlying().(*types.Interface); ok { result, success = x.convertE2I(instr.AssertedType) } else { result, success = x.convertE2V(instr.AssertedType) } resultval := result.LLVMValue() okval := success.LLVMValue() pairtyp := llvm.StructType([]llvm.Type{resultval.Type(), okval.Type()}, false) pair := llvm.Undef(pairtyp) pair = fr.builder.CreateInsertValue(pair, resultval, 0, "") pair = fr.builder.CreateInsertValue(pair, okval, 1, "") fr.env[instr] = fr.NewValue(pair, instr.Type()) } case *ssa.UnOp: operand := fr.value(instr.X) switch instr.Op { case token.ARROW: fr.env[instr] = fr.chanRecv(operand, instr.CommaOk) case token.MUL: // The bitcast is necessary to handle recursive pointer loads. llptr := fr.builder.CreateBitCast(operand.LLVMValue(), llvm.PointerType(fr.llvmtypes.ToLLVM(instr.Type()), 0), "") fr.env[instr] = fr.NewValue(fr.builder.CreateLoad(llptr, ""), instr.Type()) default: fr.env[instr] = operand.UnaryOp(instr.Op).(*LLVMValue) } default: panic(fmt.Sprintf("unhandled: %v", instr)) } }