// Ddot computes the dot product of the two vectors // \sum_i x[i]*y[i] func (Implementation) Ddot(n int, x []float64, incX int, y []float64, incY int) float64 { if n < 0 { panic(negativeN) } if incX == 0 { panic(zeroIncX) } if incY == 0 { panic(zeroIncY) } if incX == 1 && incY == 1 { if len(x) < n { panic(badLenX) } if len(y) < n { panic(badLenY) } return asm.DdotUnitary(x[:n], y) } var ix, iy int if incX < 0 { ix = (-n + 1) * incX } if incY < 0 { iy = (-n + 1) * incY } if ix >= len(x) || ix+(n-1)*incX >= len(x) { panic(badLenX) } if iy >= len(y) || iy+(n-1)*incY >= len(y) { panic(badLenY) } return asm.DdotInc(x, y, uintptr(n), uintptr(incX), uintptr(incY), uintptr(ix), uintptr(iy)) }
// Cholesky calculates the Cholesky decomposition of the matrix A and returns // whether the matrix is positive definite. The returned matrix is either a // lower triangular matrix such that A = L * L^T or an upper triangular matrix // such that A = U^T * U depending on the upper parameter. func (t *Triangular) Cholesky(a *SymDense, upper bool) (ok bool) { n := a.Symmetric() if t.isZero() { t.mat = blas64.Triangular{ N: n, Stride: n, Diag: blas.NonUnit, Data: use(t.mat.Data, n*n), } } else if n != t.mat.N { panic(ErrShape) } mat := t.mat.Data stride := t.mat.Stride if upper { t.mat.Uplo = blas.Upper for j := 0; j < n; j++ { var d float64 for k := 0; k < j; k++ { s := asm.DdotInc( mat, mat, uintptr(k), uintptr(stride), uintptr(stride), uintptr(k), uintptr(j), ) s = (a.at(j, k) - s) / t.at(k, k) t.set(k, j, s) d += s * s } d = a.at(j, j) - d if d <= 0 { t.Reset() return false } t.set(j, j, math.Sqrt(math.Max(d, 0))) } } else { t.mat.Uplo = blas.Lower for j := 0; j < n; j++ { var d float64 for k := 0; k < j; k++ { s := asm.DdotUnitary(mat[k*stride:k*stride+(n-k)], mat[j*stride:j*stride+(n-k)]) s = (a.at(j, k) - s) / t.at(k, k) t.set(j, k, s) d += s * s } d = a.at(j, j) - d if d <= 0 { t.Reset() return false } t.set(j, j, math.Sqrt(math.Max(d, 0))) } } return true }
// Dgemv computes // y = alpha * a * x + beta * y if tA = blas.NoTrans // y = alpha * A^T * x + beta * y if tA = blas.Trans or blas.ConjTrans // where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar. func (Implementation) Dgemv(tA blas.Transpose, m, n int, alpha float64, a []float64, lda int, x []float64, incX int, beta float64, y []float64, incY int) { if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans { panic(badTranspose) } if m < 0 { panic(mLT0) } if n < 0 { panic(nLT0) } if lda < max(1, n) { panic(badLdA) } if incX == 0 { panic(zeroIncX) } if incY == 0 { panic(zeroIncY) } // Quick return if possible if m == 0 || n == 0 || (alpha == 0 && beta == 1) { return } // Set up indexes lenX := m lenY := n if tA == blas.NoTrans { lenX = n lenY = m } var kx, ky int if incX > 0 { kx = 0 } else { kx = -(lenX - 1) * incX } if incY > 0 { ky = 0 } else { ky = -(lenY - 1) * incY } // First form y := beta * y if incY > 0 { Implementation{}.Dscal(lenY, beta, y, incY) } else { Implementation{}.Dscal(lenY, beta, y, -incY) } if alpha == 0 { return } // Form y := alpha * A * x + y if tA == blas.NoTrans { if incX == 1 { for i := 0; i < m; i++ { y[i] += alpha * asm.DdotUnitary(a[lda*i:lda*i+n], x) } return } iy := ky for i := 0; i < m; i++ { y[iy] += alpha * asm.DdotInc(x, a[lda*i:lda*i+n], uintptr(n), uintptr(incX), 1, uintptr(kx), 0) iy += incY } return } // Cases where a is not transposed. if incX == 1 { for i := 0; i < m; i++ { tmp := alpha * x[i] if tmp != 0 { asm.DaxpyUnitary(tmp, a[lda*i:lda*i+n], y, y) } } return } ix := kx for i := 0; i < m; i++ { tmp := alpha * x[ix] if tmp != 0 { asm.DaxpyInc(tmp, a[lda*i:lda*i+n], y, uintptr(n), 1, uintptr(incY), 0, uintptr(ky)) } ix += incX } }
// Inner computes the generalized inner product // x^T A y // between vectors x and y with matrix A. This is only a true inner product if // A is symmetric positive definite, though the operation works for any matrix A. // // Inner panics if x.Len != m or y.Len != n when A is an m x n matrix. func Inner(x *Vector, A Matrix, y *Vector) float64 { m, n := A.Dims() if x.Len() != m { panic(matrix.ErrShape) } if y.Len() != n { panic(matrix.ErrShape) } if m == 0 || n == 0 { return 0 } var sum float64 switch b := A.(type) { case RawSymmetricer: bmat := b.RawSymmetric() if bmat.Uplo != blas.Upper { // Panic as a string not a mat64.Error. panic(badSymTriangle) } for i := 0; i < x.Len(); i++ { xi := x.at(i) if xi != 0 { if y.mat.Inc == 1 { sum += xi * asm.DdotUnitary( bmat.Data[i*bmat.Stride+i:i*bmat.Stride+n], y.mat.Data[i:], ) } else { sum += xi * asm.DdotInc( bmat.Data[i*bmat.Stride+i:i*bmat.Stride+n], y.mat.Data[i*y.mat.Inc:], uintptr(n-i), 1, uintptr(y.mat.Inc), 0, 0, ) } } yi := y.at(i) if i != n-1 && yi != 0 { if x.mat.Inc == 1 { sum += yi * asm.DdotUnitary( bmat.Data[i*bmat.Stride+i+1:i*bmat.Stride+n], x.mat.Data[i+1:], ) } else { sum += yi * asm.DdotInc( bmat.Data[i*bmat.Stride+i+1:i*bmat.Stride+n], x.mat.Data[(i+1)*x.mat.Inc:], uintptr(n-i-1), 1, uintptr(x.mat.Inc), 0, 0, ) } } } case RawMatrixer: bmat := b.RawMatrix() for i := 0; i < x.Len(); i++ { xi := x.at(i) if xi != 0 { if y.mat.Inc == 1 { sum += xi * asm.DdotUnitary( bmat.Data[i*bmat.Stride:i*bmat.Stride+n], y.mat.Data, ) } else { sum += xi * asm.DdotInc( bmat.Data[i*bmat.Stride:i*bmat.Stride+n], y.mat.Data, uintptr(n), 1, uintptr(y.mat.Inc), 0, 0, ) } } } default: for i := 0; i < x.Len(); i++ { xi := x.at(i) for j := 0; j < y.Len(); j++ { sum += xi * A.At(i, j) * y.at(j) } } } return sum }