コード例 #1
0
ファイル: normal.go プロジェクト: darrenmcc/stat
// MarginalNormal returns the marginal distribution of the given input variables.
// That is, MarginalNormal returns
//  p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
// where x_i are the dimensions in the input, and x_o are the remaining dimensions.
// The input src is passed to the call to NewNormal.
func (n *Normal) MarginalNormal(vars []int, src *rand.Rand) (*Normal, bool) {
	newMean := make([]float64, len(vars))
	for i, v := range vars {
		newMean[i] = n.mu[v]
	}
	n.setSigma()
	var s mat64.SymDense
	s.SubsetSym(n.sigma, vars)
	return NewNormal(newMean, &s, src)
}
コード例 #2
0
func ExampleSymDense_SubsetSym() {
	n := 5
	s := mat64.NewSymDense(5, nil)
	count := 1.0
	for i := 0; i < n; i++ {
		for j := i; j < n; j++ {
			s.SetSym(i, j, count)
			count++
		}
	}
	fmt.Println("Original matrix:")
	fmt.Printf("%0.4v\n\n", mat64.Formatted(s))

	// Take the subset {0, 2, 4}
	var sub mat64.SymDense
	sub.SubsetSym(s, []int{0, 2, 4})
	fmt.Println("Subset {0, 2, 4}")
	fmt.Printf("%0.4v\n\n", mat64.Formatted(&sub))

	// Take the subset {0, 0, 4}
	sub.SubsetSym(s, []int{0, 0, 4})
	fmt.Println("Subset {0, 0, 4}")
	fmt.Printf("%0.4v\n\n", mat64.Formatted(&sub))

	// Output:
	// Original matrix:
	// ⎡ 1   2   3   4   5⎤
	// ⎢ 2   6   7   8   9⎥
	// ⎢ 3   7  10  11  12⎥
	// ⎢ 4   8  11  13  14⎥
	// ⎣ 5   9  12  14  15⎦
	//
	// Subset {0, 2, 4}
	// ⎡ 1   3   5⎤
	// ⎢ 3  10  12⎥
	// ⎣ 5  12  15⎦
	//
	// Subset {0, 0, 4}
	// ⎡ 1   1   5⎤
	// ⎢ 1   1   5⎥
	// ⎣ 5   5  15⎦
}
コード例 #3
0
ファイル: normal.go プロジェクト: darrenmcc/stat
// ConditionNormal returns the Normal distribution that is the receiver conditioned
// on the input evidence. The returned multivariate normal has dimension
// n - len(observed), where n is the dimension of the original receiver. The updated
// mean and covariance are
//  mu = mu_un + sigma_{ob,un}^T * sigma_{ob,ob}^-1 (v - mu_ob)
//  sigma = sigma_{un,un} - sigma_{ob,un}^T * sigma_{ob,ob}^-1 * sigma_{ob,un}
// where mu_un and mu_ob are the original means of the unobserved and observed
// variables respectively, sigma_{un,un} is the unobserved subset of the covariance
// matrix, sigma_{ob,ob} is the observed subset of the covariance matrix, and
// sigma_{un,ob} are the cross terms. The elements of x_2 have been observed with
// values v. The dimension order is preserved during conditioning, so if the value
// of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...}
// of the original Normal distribution.
//
// ConditionNormal returns {nil, false} if there is a failure during the update.
// Mathematically this is impossible, but can occur with finite precision arithmetic.
func (n *Normal) ConditionNormal(observed []int, values []float64, src *rand.Rand) (*Normal, bool) {
	if len(observed) == 0 {
		panic("normal: no observed value")
	}
	if len(observed) != len(values) {
		panic("normal: input slice length mismatch")
	}
	for _, v := range observed {
		if v < 0 || v >= n.Dim() {
			panic("normal: observed value out of bounds")
		}
	}

	ob := len(observed)
	unob := n.Dim() - ob
	obMap := make(map[int]struct{})
	for _, v := range observed {
		if _, ok := obMap[v]; ok {
			panic("normal: observed dimension occurs twice")
		}
		obMap[v] = struct{}{}
	}
	if len(observed) == n.Dim() {
		panic("normal: all dimensions observed")
	}
	unobserved := make([]int, 0, unob)
	for i := 0; i < n.Dim(); i++ {
		if _, ok := obMap[i]; !ok {
			unobserved = append(unobserved, i)
		}
	}
	mu1 := make([]float64, unob)
	for i, v := range unobserved {
		mu1[i] = n.mu[v]
	}
	mu2 := make([]float64, ob) // really v - mu2
	for i, v := range observed {
		mu2[i] = values[i] - n.mu[v]
	}

	n.setSigma()

	var sigma11, sigma22 mat64.SymDense
	sigma11.SubsetSym(n.sigma, unobserved)
	sigma22.SubsetSym(n.sigma, observed)

	sigma21 := mat64.NewDense(ob, unob, nil)
	for i, r := range observed {
		for j, c := range unobserved {
			v := n.sigma.At(r, c)
			sigma21.Set(i, j, v)
		}
	}

	var chol mat64.Cholesky
	ok := chol.Factorize(&sigma22)
	if !ok {
		return nil, ok
	}

	// Compute sigma_{2,1}^T * sigma_{2,2}^-1 (v - mu_2).
	v := mat64.NewVector(ob, mu2)
	var tmp, tmp2 mat64.Vector
	err := tmp.SolveCholeskyVec(&chol, v)
	if err != nil {
		return nil, false
	}
	tmp2.MulVec(sigma21.T(), &tmp)

	// Compute sigma_{2,1}^T * sigma_{2,2}^-1 * sigma_{2,1}.
	// TODO(btracey): Should this be a method of SymDense?
	var tmp3, tmp4 mat64.Dense
	err = tmp3.SolveCholesky(&chol, sigma21)
	if err != nil {
		return nil, false
	}
	tmp4.Mul(sigma21.T(), &tmp3)

	for i := range mu1 {
		mu1[i] += tmp2.At(i, 0)
	}

	// TODO(btracey): If tmp2 can constructed with a method, then this can be
	// replaced with SubSym.
	for i := 0; i < len(unobserved); i++ {
		for j := i; j < len(unobserved); j++ {
			v := sigma11.At(i, j)
			sigma11.SetSym(i, j, v-tmp4.At(i, j))
		}
	}
	return NewNormal(mu1, &sigma11, src)
}