func ExampleMachineLearning_Predict() { svc := machinelearning.New(nil) params := &machinelearning.PredictInput{ MLModelID: aws.String("EntityId"), // Required PredictEndpoint: aws.String("VipURL"), // Required Record: map[string]*string{ // Required "Key": aws.String("VariableValue"), // Required // More values... }, } resp, err := svc.Predict(params) if err != nil { if awsErr, ok := err.(awserr.Error); ok { // Generic AWS error with Code, Message, and original error (if any) fmt.Println(awsErr.Code(), awsErr.Message(), awsErr.OrigErr()) if reqErr, ok := err.(awserr.RequestFailure); ok { // A service error occurred fmt.Println(reqErr.Code(), reqErr.Message(), reqErr.StatusCode(), reqErr.RequestID()) } } else { // This case should never be hit, the SDK should always return an // error which satisfies the awserr.Error interface. fmt.Println(err.Error()) } } // Pretty-print the response data. fmt.Println(awsutil.Prettify(resp)) }
func ExampleMachineLearning_UpdateMLModel() { svc := machinelearning.New(nil) params := &machinelearning.UpdateMLModelInput{ MLModelID: aws.String("EntityId"), // Required MLModelName: aws.String("EntityName"), ScoreThreshold: aws.Float64(1.0), } resp, err := svc.UpdateMLModel(params) if err != nil { if awsErr, ok := err.(awserr.Error); ok { // Generic AWS error with Code, Message, and original error (if any) fmt.Println(awsErr.Code(), awsErr.Message(), awsErr.OrigErr()) if reqErr, ok := err.(awserr.RequestFailure); ok { // A service error occurred fmt.Println(reqErr.Code(), reqErr.Message(), reqErr.StatusCode(), reqErr.RequestID()) } } else { // This case should never be hit, the SDK should always return an // error which satisfies the awserr.Error interface. fmt.Println(err.Error()) } } // Pretty-print the response data. fmt.Println(awsutil.Prettify(resp)) }
func ExampleMachineLearning_CreateMLModel() { svc := machinelearning.New(nil) params := &machinelearning.CreateMLModelInput{ MLModelID: aws.String("EntityId"), // Required MLModelType: aws.String("MLModelType"), // Required TrainingDataSourceID: aws.String("EntityId"), // Required MLModelName: aws.String("EntityName"), Parameters: map[string]*string{ "Key": aws.String("StringType"), // Required // More values... }, Recipe: aws.String("Recipe"), RecipeURI: aws.String("S3Url"), } resp, err := svc.CreateMLModel(params) if err != nil { if awsErr, ok := err.(awserr.Error); ok { // Generic AWS error with Code, Message, and original error (if any) fmt.Println(awsErr.Code(), awsErr.Message(), awsErr.OrigErr()) if reqErr, ok := err.(awserr.RequestFailure); ok { // A service error occurred fmt.Println(reqErr.Code(), reqErr.Message(), reqErr.StatusCode(), reqErr.RequestID()) } } else { // This case should never be hit, the SDK should always return an // error which satisfies the awserr.Error interface. fmt.Println(err.Error()) } } // Pretty-print the response data. fmt.Println(awsutil.Prettify(resp)) }
func ExampleMachineLearning_CreateDataSourceFromS3() { svc := machinelearning.New(nil) params := &machinelearning.CreateDataSourceFromS3Input{ DataSourceID: aws.String("EntityId"), // Required DataSpec: &machinelearning.S3DataSpec{ // Required DataLocationS3: aws.String("S3Url"), // Required DataRearrangement: aws.String("DataRearrangement"), DataSchema: aws.String("DataSchema"), DataSchemaLocationS3: aws.String("S3Url"), }, ComputeStatistics: aws.Bool(true), DataSourceName: aws.String("EntityName"), } resp, err := svc.CreateDataSourceFromS3(params) if err != nil { if awsErr, ok := err.(awserr.Error); ok { // Generic AWS error with Code, Message, and original error (if any) fmt.Println(awsErr.Code(), awsErr.Message(), awsErr.OrigErr()) if reqErr, ok := err.(awserr.RequestFailure); ok { // A service error occurred fmt.Println(reqErr.Code(), reqErr.Message(), reqErr.StatusCode(), reqErr.RequestID()) } } else { // This case should never be hit, the SDK should always return an // error which satisfies the awserr.Error interface. fmt.Println(err.Error()) } } // Pretty-print the response data. fmt.Println(awsutil.Prettify(resp)) }
func ExampleMachineLearning_CreateDataSourceFromRDS() { svc := machinelearning.New(nil) params := &machinelearning.CreateDataSourceFromRDSInput{ DataSourceID: aws.String("EntityId"), // Required RDSData: &machinelearning.RDSDataSpec{ // Required DatabaseCredentials: &machinelearning.RDSDatabaseCredentials{ // Required Password: aws.String("RDSDatabasePassword"), // Required Username: aws.String("RDSDatabaseUsername"), // Required }, DatabaseInformation: &machinelearning.RDSDatabase{ // Required DatabaseName: aws.String("RDSDatabaseName"), // Required InstanceIdentifier: aws.String("RDSInstanceIdentifier"), // Required }, ResourceRole: aws.String("EDPResourceRole"), // Required S3StagingLocation: aws.String("S3Url"), // Required SecurityGroupIDs: []*string{ // Required aws.String("EDPSecurityGroupId"), // Required // More values... }, SelectSQLQuery: aws.String("RDSSelectSqlQuery"), // Required ServiceRole: aws.String("EDPServiceRole"), // Required SubnetID: aws.String("EDPSubnetId"), // Required DataRearrangement: aws.String("DataRearrangement"), DataSchema: aws.String("DataSchema"), DataSchemaURI: aws.String("S3Url"), }, RoleARN: aws.String("RoleARN"), // Required ComputeStatistics: aws.Bool(true), DataSourceName: aws.String("EntityName"), } resp, err := svc.CreateDataSourceFromRDS(params) if err != nil { if awsErr, ok := err.(awserr.Error); ok { // Generic AWS error with Code, Message, and original error (if any) fmt.Println(awsErr.Code(), awsErr.Message(), awsErr.OrigErr()) if reqErr, ok := err.(awserr.RequestFailure); ok { // A service error occurred fmt.Println(reqErr.Code(), reqErr.Message(), reqErr.StatusCode(), reqErr.RequestID()) } } else { // This case should never be hit, the SDK should always return an // error which satisfies the awserr.Error interface. fmt.Println(err.Error()) } } // Pretty-print the response data. fmt.Println(awsutil.Prettify(resp)) }
func TestPredictEndpoint(t *testing.T) { ml := machinelearning.New(nil) ml.Handlers.Send.Clear() ml.Handlers.Send.PushBack(func(r *aws.Request) { r.HTTPResponse = &http.Response{ StatusCode: 200, Header: http.Header{}, Body: ioutil.NopCloser(bytes.NewReader([]byte("{}"))), } }) req, _ := ml.PredictRequest(&machinelearning.PredictInput{ PredictEndpoint: aws.String("https://localhost/endpoint"), MLModelID: aws.String("id"), Record: map[string]*string{}, }) err := req.Send() assert.Nil(t, err) assert.Equal(t, "https://localhost/endpoint", req.HTTPRequest.URL.String()) }
func ExampleMachineLearning_DescribeMLModels() { svc := machinelearning.New(nil) params := &machinelearning.DescribeMLModelsInput{ EQ: aws.String("ComparatorValue"), FilterVariable: aws.String("MLModelFilterVariable"), GE: aws.String("ComparatorValue"), GT: aws.String("ComparatorValue"), LE: aws.String("ComparatorValue"), LT: aws.String("ComparatorValue"), Limit: aws.Int64(1), NE: aws.String("ComparatorValue"), NextToken: aws.String("StringType"), Prefix: aws.String("ComparatorValue"), SortOrder: aws.String("SortOrder"), } resp, err := svc.DescribeMLModels(params) if err != nil { if awsErr, ok := err.(awserr.Error); ok { // Generic AWS error with Code, Message, and original error (if any) fmt.Println(awsErr.Code(), awsErr.Message(), awsErr.OrigErr()) if reqErr, ok := err.(awserr.RequestFailure); ok { // A service error occurred fmt.Println(reqErr.Code(), reqErr.Message(), reqErr.StatusCode(), reqErr.RequestID()) } } else { // This case should never be hit, the SDK should always return an // error which satisfies the awserr.Error interface. fmt.Println(err.Error()) } } // Pretty-print the response data. fmt.Println(awsutil.Prettify(resp)) }
func init() { Before("@machinelearning", func() { World["client"] = machinelearning.New(nil) }) }
func TestInterface(t *testing.T) { assert.Implements(t, (*machinelearningiface.MachineLearningAPI)(nil), machinelearning.New(nil)) }