// // Solves a geometric program // // minimize log sum exp (F0*x+g0) // subject to log sum exp (Fi*x+gi) <= 0, i=1,...,m // G*x <= h // A*x = b // func Gp(K []int, F, g, G, h, A, b *matrix.FloatMatrix, solopts *SolverOptions) (sol *Solution, err error) { if err = checkArgK(K); err != nil { return } l := sumdim(K) if F == nil || F.Rows() != l { err = errors.New(fmt.Sprintf("'F' must matrix with %d rows", l)) return } if g == nil || !g.SizeMatch(l, 1) { err = errors.New(fmt.Sprintf("'g' must matrix with size (%d,1)", l)) return } n := F.Cols() if G == nil { G = matrix.FloatZeros(0, n) } if h == nil { h = matrix.FloatZeros(0, 1) } if G.Cols() != n { err = errors.New(fmt.Sprintf("'G' must matrix with size %d columns", n)) return } ml := G.Rows() if h == nil || !h.SizeMatch(ml, 1) { err = errors.New(fmt.Sprintf("'h' must matrix with size (%d,1)", ml)) return } if A == nil { A = matrix.FloatZeros(0, n) } if b == nil { b = matrix.FloatZeros(0, 1) } if A.Cols() != n { err = errors.New(fmt.Sprintf("'A' must matrix with size %d columns", n)) return } p := A.Rows() if b == nil || !b.SizeMatch(p, 1) { err = errors.New(fmt.Sprintf("'b' must matrix with size (%d,1)", p)) return } dims := sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{ml}) gpProg := createGpProg(K, F, g) return Cp(gpProg, G, h, A, b, dims, solopts) }
// Solves a pair of primal and dual LPs // // minimize c'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -h'*z - b'*y // subject to G'*z + A'*y + c = 0 // z >= 0. // func Lp(c, G, h, A, b *matrix.FloatMatrix, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil { err = errors.New("'c' must a column matrix") return } n := c.Rows() if n < 1 { err = errors.New("Number of variables must be at least 1") return } if G == nil || G.Cols() != n { err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n)) return } m := G.Rows() if h == nil || !h.SizeMatch(m, 1) { err = errors.New(fmt.Sprintf("'h' must be matrix of size (%d,1)", m)) return } if A == nil { A = matrix.FloatZeros(0, n) } if A.Cols() != n { err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n)) return } p := A.Rows() if b == nil { b = matrix.FloatZeros(0, 1) } if !b.SizeMatch(p, 1) { err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p)) return } dims := sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{m}) return ConeLp(c, G, h, A, b, dims, solopts, primalstart, dualstart) }
// min(x) st. x+y = 1, x >= y func TestSimple(t *testing.T) { A := matrix.FloatNew(2, 3, []float64{1.0, -1.0, 0.0, 1.0, 0.0, 1.0}) b := matrix.FloatNew(2, 1, []float64{1.0, 0.0}) c := matrix.FloatNew(3, 1, []float64{0.0, 1.0, 0.0}) G := matrix.FloatNew(1, 3, []float64{0.0, -1.0, 1.0}) h := matrix.FloatNew(1, 1, []float64{0.0}) dims := sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{1}) t.Logf("A=\n%v\n", A) t.Logf("b=\n%v\n", b) t.Logf("G=\n%v\n", G) t.Logf("h=\n%v\n", h) t.Logf("c=\n%v\n", c) // this should work... t.Logf("Ldl solver ...\n") sol, err := solve("ldl", c, G, h, A, b) if sol != nil && sol.Status == Optimal { x := sol.Result.At("x")[0] s := sol.Result.At("s")[0] z := sol.Result.At("z")[0] t.Logf("x=\n%v\n", x.ToString("%.9f")) t.Logf("s=\n%v\n", s.ToString("%.9f")) t.Logf("z=\n%v\n", z.ToString("%.9f")) } else { t.Logf("status: %v\n", err) t.Fail() } // this should work too t.Logf("chol2 solver ...\n") sol, err = solve("chol2", c, G, h, A, b) if err != nil { t.Logf("chol2 status: %v\n", err) t.Fail() } }
// The analytic centering with cone constraints example of section 9.1 // (Problems with nonlinear objectives). func TestCp(t *testing.T) { xref := []float64{0.41132359189354400, 0.55884774432611484, -0.72007090016957931} F := &acenterProg{3, 1} gdata := [][]float64{ []float64{0., -1., 0., 0., -21., -11., 0., -11., 10., 8., 0., 8., 5.}, []float64{0., 0., -1., 0., 0., 10., 16., 10., -10., -10., 16., -10., 3.}, []float64{0., 0., 0., -1., -5., 2., -17., 2., -6., 8., -17., -7., 6.}} G := matrix.FloatMatrixFromTable(gdata) h := matrix.FloatVector( []float64{1.0, 0.0, 0.0, 0.0, 20., 10., 40., 10., 80., 10., 40., 10., 15.}) var solopts SolverOptions solopts.MaxIter = 40 solopts.ShowProgress = false dims := sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{0}) dims.Set("q", []int{4}) dims.Set("s", []int{3}) sol, err := Cp(F, G, h, nil, nil, dims, &solopts) if err == nil && sol.Status == Optimal { x := sol.Result.At("x")[0] t.Logf("x = \n%v\n", x.ToString("%.9f")) xe, _ := nrmError(matrix.FloatVector(xref), x) if xe > TOL { t.Logf("x differs [%.3e] from exepted too much.", xe) t.Fail() } } else { t.Logf("result: %v\n", err) t.Fail() } }
// Solves a pair of primal and dual SOCPs // // minimize c'*x // subject to Gl*x + sl = hl // Gq[k]*x + sq[k] = hq[k], k = 0, ..., N-1 // A*x = b // sl >= 0, // sq[k] >= 0, k = 0, ..., N-1 // // maximize -hl'*z - sum_k hq[k]'*zq[k] - b'*y // subject to Gl'*zl + sum_k Gq[k]'*zq[k] + A'*y + c = 0 // zl >= 0, zq[k] >= 0, k = 0, ..., N-1. // // The inequalities sl >= 0 and zl >= 0 are elementwise vector // inequalities. The inequalities sq[k] >= 0, zq[k] >= 0 are second // order cone inequalities, i.e., equivalent to // // sq[k][0] >= || sq[k][1:] ||_2, zq[k][0] >= || zq[k][1:] ||_2. // func Socp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghq *sets.FloatMatrixSet, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil { err = errors.New("'c' must a column matrix") return } n := c.Rows() if n < 1 { err = errors.New("Number of variables must be at least 1") return } if Gl == nil { Gl = matrix.FloatZeros(0, n) } if Gl.Cols() != n { err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n)) return } ml := Gl.Rows() if hl == nil { hl = matrix.FloatZeros(0, 1) } if !hl.SizeMatch(ml, 1) { err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml)) return } Gqset := Ghq.At("Gq") mq := make([]int, 0) for i, Gq := range Gqset { if Gq.Cols() != n { err = errors.New(fmt.Sprintf("'Gq' must be list of matrices with %d columns", n)) return } if Gq.Rows() == 0 { err = errors.New(fmt.Sprintf("the number of rows of 'Gq[%d]' is zero", i)) return } mq = append(mq, Gq.Rows()) } hqset := Ghq.At("hq") if len(Gqset) != len(hqset) { err = errors.New(fmt.Sprintf("'hq' must be a list of %d matrices", len(Gqset))) return } for i, hq := range hqset { if !hq.SizeMatch(Gqset[i].Rows(), 1) { s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,1)", i, hq.Rows(), hq.Cols(), Gqset[i].Rows()) err = errors.New(s) return } } if A == nil { A = matrix.FloatZeros(0, n) } if A.Cols() != n { err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n)) return } p := A.Rows() if b == nil { b = matrix.FloatZeros(0, 1) } if !b.SizeMatch(p, 1) { err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p)) return } dims := sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{ml}) dims.Set("q", mq) //N := dims.Sum("l", "q") hargs := make([]*matrix.FloatMatrix, 0, len(hqset)+1) hargs = append(hargs, hl) hargs = append(hargs, hqset...) h, indh := matrix.FloatMatrixStacked(matrix.StackDown, hargs...) Gargs := make([]*matrix.FloatMatrix, 0, len(Gqset)+1) Gargs = append(Gargs, Gl) Gargs = append(Gargs, Gqset...) G, indg := matrix.FloatMatrixStacked(matrix.StackDown, Gargs...) var pstart, dstart *sets.FloatMatrixSet = nil, nil if primalstart != nil { pstart = sets.NewFloatSet("x", "s") pstart.Set("x", primalstart.At("x")[0]) slset := primalstart.At("sl") margs := make([]*matrix.FloatMatrix, 0, len(slset)+1) margs = append(margs, primalstart.At("s")[0]) margs = append(margs, slset...) sl, _ := matrix.FloatMatrixStacked(matrix.StackDown, margs...) pstart.Set("s", sl) } if dualstart != nil { dstart = sets.NewFloatSet("y", "z") dstart.Set("y", dualstart.At("y")[0]) zlset := primalstart.At("zl") margs := make([]*matrix.FloatMatrix, 0, len(zlset)+1) margs = append(margs, dualstart.At("z")[0]) margs = append(margs, zlset...) zl, _ := matrix.FloatMatrixStacked(matrix.StackDown, margs...) dstart.Set("z", zl) } sol, err = ConeLp(c, G, h, A, b, dims, solopts, pstart, dstart) // unpack sol.Result if err == nil { s := sol.Result.At("s")[0] sl := matrix.FloatVector(s.FloatArray()[:ml]) sol.Result.Append("sl", sl) ind := ml for _, k := range indh[1:] { sk := matrix.FloatVector(s.FloatArray()[ind : ind+k]) sol.Result.Append("sq", sk) ind += k } z := sol.Result.At("z")[0] zl := matrix.FloatVector(z.FloatArray()[:ml]) sol.Result.Append("zl", zl) ind = ml for _, k := range indg[1:] { zk := matrix.FloatVector(z.FloatArray()[ind : ind+k]) sol.Result.Append("zq", zk) ind += k } } sol.Result.Remove("s") sol.Result.Remove("z") return }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // f is vector valued, convex and twice differentiable. The linear // inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. The // next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{h.Rows()}, q: []int{}, s: []int{}. // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] primal solution // Result.At("snl")[0] non-linear constraint slacks // Result.At("sl")[0] linear constraint slacks // Result.At("y")[0] values for linear equality constraints y // Result.At("znl")[0] values of dual variables for nonlinear inequalities // Result.At("zl")[0] values of dual variables for linear inequalities // // If err is non-nil then sol is nil and err contains information about the argument or // computation error. // func Cpl(F ConvexProg, c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } var mc = matrixVar{c} var mb = matrixVar{b} var mA = matrixVarA{A} var mG = matrixVarG{G, dims} solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "chol" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTCpSolver = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, mnl) // solver is kktsolver = func(W *sets.FloatMatrixSet, x, z *matrix.FloatMatrix) (KKTFunc, error) { _, Df, H, err := F.F2(x, z) if err != nil { return nil, err } return factor(W, H, Df) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } //return CplCustom(F, c, &mG, h, &mA, b, dims, kktsolver, solopts) return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // using custom KTT equation solver and custom constraints G and A. // func CplCustomMatrix(F ConvexProg, c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } mc := matrixVar{c} mb := matrixVar{b} var mG MatrixVarG var mA MatrixVarA if G == nil { mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims} } else { mG = &matrixIfG{G} } if A == nil { mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())} } else { mA = &matrixIfA{A} } return cpl_problem(F, &mc, mG, h, mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // using custom KTT equation solver. // func CplCustomKKT(F ConvexProg, c *matrix.FloatMatrix, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } var mc = matrixVar{c} var mb = matrixVar{b} var mA = matrixVarA{A} var mG = matrixVarG{G, dims} return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a pair of primal and dual convex quadratic cone programs // // minimize (1/2)*x'*P*x + q'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -(1/2)*(q + G'*z + A'*y)' * pinv(P) * (q + G'*z + A'*y) // - h'*z - b'*y // subject to q + G'*z + A'*y in range(P) // z >= 0. // // The inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. // The next N cones are 2nd order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}. // // Argument initval contains optional starting points for primal and // dual problems. If non-nil then initval is a FloatMatrixSet having following entries. // // initvals.At("x")[0] starting point for x // initvals.At("s")[0] starting point for s // initvals.At("y")[0] starting point for y // initvals.At("z")[0] starting point for z // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] solution for x // Result.At("y")[0] solution for y // Result.At("s")[0] solution for s // Result.At("z")[0] solution for z // func ConeQp(P, q, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { if q == nil || q.Cols() != 1 { err = errors.New("'q' must be non-nil matrix with one column") return } if P == nil || P.Rows() != q.Rows() || P.Cols() != q.Rows() { err = errors.New(fmt.Sprintf("'P' must be non-nil matrix of size (%d, %d)", q.Rows(), q.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, q.Rows()) } if !G.SizeMatch(cdim, q.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, q.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, q.Rows()) } if A.Cols() != q.Rows() { estr := fmt.Sprintf("'A' must have %d columns", q.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "ldl" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTConeSolver = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, 0) if err != nil { return nil, err } kktsolver = func(W *sets.FloatMatrixSet) (KKTFunc, error) { return factor(W, P, nil) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mP := &matrixVarP{P} mq := &matrixVar{q} mb := &matrixVar{b} return coneqp_problem(mP, mq, mG, h, mA, mb, dims, kktsolver, solopts, initvals) }
// Solves a convex optimization problem with a linear objective // // minimize f0(x) // subject to fk(x) <= 0, k = 1, ..., mnl // G*x <= h // A*x = b. // // f is vector valued, convex and twice differentiable. The linear // inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. The // next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{h.Rows()}, q: []int{}, s: []int{}. // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] primal solution // Result.At("snl")[0] non-linear constraint slacks // Result.At("sl")[0] linear constraint slacks // Result.At("y")[0] values for linear equality constraints y // Result.At("znl")[0] values of dual variables for nonlinear inequalities // Result.At("zl")[0] values of dual variables for linear inequalities // // If err is non-nil then sol is nil and err contains information about the argument or // computation error. // func Cp(F ConvexProg, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, x0.Rows()) } if !G.SizeMatch(cdim, x0.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, x0.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, x0.Rows()) } if A.Cols() != x0.Rows() { estr := fmt.Sprintf("'A' must have %d columns", x0.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "chol" } else { solvername = "chol2" } } c_e := newEpigraph(x0, 1.0) blas.ScalFloat(c_e.m(), 0.0) //F_e := &cpProg{F} G_e := epMatrixG{G, dims} A_e := epMatrixA{A} b_e := matrixVar{b} var factor kktFactor var kktsolver KKTCpSolver = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, mnl) if err != nil { return nil, err } // solver is kktsolver = func(W *sets.FloatMatrixSet, x, z *matrix.FloatMatrix) (KKTFunc, error) { _, Df, H, err := F.F2(x, z) if err != nil { return nil, err } return factor(W, H, Df.GetSubMatrix(1, 0)) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } return cp_problem(F, c_e, &G_e, h, &A_e, &b_e, dims, kktsolver, solopts, x0, mnl) }
// Solves a pair of primal and dual cone programs using custom KKT solver and custom // matrices P, G and A. // // P must implement interface MatrixP, G must implement interface MatrixG // and A must implement interface MatrixA. // func ConeQpCustomMatrix(P MatrixP, q *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { err = nil if q == nil || q.Cols() != 1 { err = errors.New("'q' must be non-nil matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if P == nil { err = errors.New("'P' must be non-nil MatrixP interface.") return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() > q.Rows() { err = errors.New("Rank(A) < p or Rank[G; A] < n") return } if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } var mG MatrixVarG var mP MatrixVarP var mA MatrixVarA if A == nil { mA = &matrixVarA{matrix.FloatZeros(0, q.Rows())} } else { mA = &matrixIfA{A} } if G == nil { mG = &matrixVarG{matrix.FloatZeros(0, q.Rows()), dims} } else { mG = &matrixIfG{G} } mP = &matrixIfP{P} mq := &matrixVar{q} mb := &matrixVar{b} return coneqp_problem(mP, mq, mG, h, mA, mb, dims, kktsolver, solopts, initvals) }
// Solves a pair of primal and dual convex quadratic cone programs using custom KKT solver. // func ConeQpCustomKKT(P, q, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { if q == nil || q.Cols() != 1 { err = errors.New("'q' must be non-nil matrix with one column") return } if P == nil || P.Rows() != q.Rows() || P.Cols() != q.Rows() { err = errors.New(fmt.Sprintf("'P' must be non-nil matrix of size (%d, %d)", q.Rows(), q.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, q.Rows()) } if !G.SizeMatch(cdim, q.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, q.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, q.Rows()) } if A.Cols() != q.Rows() { estr := fmt.Sprintf("'A' must have %d columns", q.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if kktsolver == nil { err = errors.New("nil kktsolver not allowed") return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mP := &matrixVarP{P} mq := &matrixVar{q} mb := &matrixVar{b} return coneqp_problem(mP, mq, mG, h, mA, mb, dims, kktsolver, solopts, initvals) }
// Solves a pair of primal and dual cone programs using custom KKT solver. // func ConeLpCustomKKT(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mc := &matrixVar{c} mb := &matrixVar{b} return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart) }
// Solves a pair of primal and dual cone programs // // minimize c'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -h'*z - b'*y // subject to G'*z + A'*y + c = 0 // z >= 0. // // The inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. // The next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}. // // Arguments primalstart, dualstart are optional starting points for primal and // dual problems. If non-nil then primalstart is a FloatMatrixSet having two entries. // // primalstart.At("x")[0] starting point for x // primalstart.At("s")[0] starting point for s // dualstart.At("y")[0] starting point for y // dualstart.At("z")[0] starting point for z // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] solution for x // Result.At("y")[0] solution for y // Result.At("s")[0] solution for s // Result.At("z")[0] solution for z // func ConeLp(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if c.Rows() < 1 { err = errors.New("No variables, 'c' must have at least one row") return } if h == nil || h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "qr" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTConeSolver = nil if kktfunc, ok := lpsolvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, 0) if err != nil { return nil, err } kktsolver = func(W *sets.FloatMatrixSet) (KKTFunc, error) { return factor(W, nil, nil) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } //return ConeLpCustom(c, &mG, h, &mA, b, dims, kktsolver, solopts, primalstart, dualstart) c_e := &matrixVar{c} G_e := &matrixVarG{G, dims} A_e := &matrixVarA{A} b_e := &matrixVar{b} return conelp_problem(c_e, G_e, h, A_e, b_e, dims, kktsolver, solopts, primalstart, dualstart) }
// Solves a convex optimization problem with a linear objective // // minimize f0(x) // subject to fk(x) <= 0, k = 1, ..., mnl // G*x <= h // A*x = b. // // using custom solver for KKT equations and constraint equations G and A. // func CpCustomMatrix(F ConvexProg, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } var G_e MatrixVarG = nil if G == nil { G_e = &epMatrixG{matrix.FloatZeros(0, x0.Rows()), dims} } else { G_e = &epiMatrixG{G, dims} } var A_e MatrixVarA = nil if A == nil { A_e = &epMatrixA{matrix.FloatZeros(0, x0.Rows())} } else { A_e = &epiMatrixA{A} } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if kktsolver == nil { err = errors.New("'kktsolver' must be non-nil function.") return } c_e := newEpigraph(x0, 1.0) blas.ScalFloat(c_e.m(), 0.0) b_e := matrixVar{b} return cp_problem(F, c_e, G_e, h, A_e, &b_e, dims, kktsolver, solopts, x0, mnl) }
// Solves a convex optimization problem with a linear objective // // minimize f0(x) // subject to fk(x) <= 0, k = 1, ..., mnl // G*x <= h // A*x = b. // // using custom solver for KKT equations. // func CpCustomKKT(F ConvexProg, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, x0.Rows()) } if !G.SizeMatch(cdim, x0.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, x0.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, x0.Rows()) } if A.Cols() != x0.Rows() { estr := fmt.Sprintf("'A' must have %d columns", x0.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if kktsolver == nil { err = errors.New("'kktsolver' must be non-nil function.") return } c_e := newEpigraph(x0, 1.0) blas.ScalFloat(x0, 0.0) G_e := epMatrixG{G, dims} A_e := epMatrixA{A} b_e := matrixVar{b} return cp_problem(F, c_e, &G_e, h, &A_e, &b_e, dims, kktsolver, solopts, x0, mnl) }
// Solves a pair of primal and dual SDPs // // minimize c'*x // subject to Gl*x + sl = hl // mat(Gs[k]*x) + ss[k] = hs[k], k = 0, ..., N-1 // A*x = b // sl >= 0, ss[k] >= 0, k = 0, ..., N-1 // // maximize -hl'*z - sum_k trace(hs[k]*zs[k]) - b'*y // subject to Gl'*zl + sum_k Gs[k]'*vec(zs[k]) + A'*y + c = 0 // zl >= 0, zs[k] >= 0, k = 0, ..., N-1. // // The inequalities sl >= 0 and zl >= 0 are elementwise vector // inequalities. The inequalities ss[k] >= 0, zs[k] >= 0 are matrix // inequalities, i.e., the symmetric matrices ss[k] and zs[k] must be // positive semidefinite. mat(Gs[k]*x) is the symmetric matrix X with // X[:] = Gs[k]*x. For a symmetric matrix, zs[k], vec(zs[k]) is the // vector zs[k][:]. // func Sdp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghs *sets.FloatMatrixSet, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil { err = errors.New("'c' must a column matrix") return } n := c.Rows() if n < 1 { err = errors.New("Number of variables must be at least 1") return } if Gl == nil { Gl = matrix.FloatZeros(0, n) } if Gl.Cols() != n { err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n)) return } ml := Gl.Rows() if hl == nil { hl = matrix.FloatZeros(0, 1) } if !hl.SizeMatch(ml, 1) { err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml)) return } Gsset := Ghs.At("Gs") ms := make([]int, 0) for i, Gs := range Gsset { if Gs.Cols() != n { err = errors.New(fmt.Sprintf("'Gs' must be list of matrices with %d columns", n)) return } sz := int(math.Sqrt(float64(Gs.Rows()))) if Gs.Rows() != sz*sz { err = errors.New(fmt.Sprintf("the squareroot of the number of rows of 'Gq[%d]' is not an integer", i)) return } ms = append(ms, sz) } hsset := Ghs.At("hs") if len(Gsset) != len(hsset) { err = errors.New(fmt.Sprintf("'hs' must be a list of %d matrices", len(Gsset))) return } for i, hs := range hsset { if !hs.SizeMatch(ms[i], ms[i]) { s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,%d)", i, hs.Rows(), hs.Cols(), ms[i], ms[i]) err = errors.New(s) return } } if A == nil { A = matrix.FloatZeros(0, n) } if A.Cols() != n { err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n)) return } p := A.Rows() if b == nil { b = matrix.FloatZeros(0, 1) } if !b.SizeMatch(p, 1) { err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p)) return } dims := sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{ml}) dims.Set("s", ms) N := dims.Sum("l") + dims.SumSquared("s") // Map hs matrices to h vector h := matrix.FloatZeros(N, 1) h.SetIndexesFromArray(hl.FloatArray()[:ml], matrix.MakeIndexSet(0, ml, 1)...) ind := ml for k, hs := range hsset { h.SetIndexesFromArray(hs.FloatArray(), matrix.MakeIndexSet(ind, ind+ms[k]*ms[k], 1)...) ind += ms[k] * ms[k] } Gargs := make([]*matrix.FloatMatrix, 0) Gargs = append(Gargs, Gl) Gargs = append(Gargs, Gsset...) G, sizeg := matrix.FloatMatrixStacked(matrix.StackDown, Gargs...) var pstart, dstart *sets.FloatMatrixSet = nil, nil if primalstart != nil { pstart = sets.NewFloatSet("x", "s") pstart.Set("x", primalstart.At("x")[0]) slset := primalstart.At("sl") margs := make([]*matrix.FloatMatrix, 0, len(slset)+1) margs = append(margs, primalstart.At("s")[0]) margs = append(margs, slset...) sl, _ := matrix.FloatMatrixStacked(matrix.StackDown, margs...) pstart.Set("s", sl) } if dualstart != nil { dstart = sets.NewFloatSet("y", "z") dstart.Set("y", dualstart.At("y")[0]) zlset := primalstart.At("zl") margs := make([]*matrix.FloatMatrix, 0, len(zlset)+1) margs = append(margs, dualstart.At("z")[0]) margs = append(margs, zlset...) zl, _ := matrix.FloatMatrixStacked(matrix.StackDown, margs...) dstart.Set("z", zl) } //fmt.Printf("h=\n%v\n", h.ToString("%.3f")) //fmt.Printf("G=\n%v\n", G.ToString("%.3f")) sol, err = ConeLp(c, G, h, A, b, dims, solopts, pstart, dstart) // unpack sol.Result if err == nil { s := sol.Result.At("s")[0] sl := matrix.FloatVector(s.FloatArray()[:ml]) sol.Result.Append("sl", sl) ind := ml for _, m := range ms { sk := matrix.FloatNew(m, m, s.FloatArray()[ind:ind+m*m]) sol.Result.Append("ss", sk) ind += m * m } z := sol.Result.At("z")[0] zl := matrix.FloatVector(s.FloatArray()[:ml]) sol.Result.Append("zl", zl) ind = ml for i, k := range sizeg[1:] { zk := matrix.FloatNew(ms[i], ms[i], z.FloatArray()[ind:ind+k]) sol.Result.Append("zs", zk) ind += k } } sol.Result.Remove("s") sol.Result.Remove("z") return }
func coneqp_solver(P MatrixVarP, q MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix, A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTConeSolverVar, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { err = nil EXPON := 3 STEP := 0.99 sol = &Solution{Unknown, nil, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0} //var kktsolver func(*sets.FloatMatrixSet)(KKTFunc, error) = nil var refinement int var correction bool = true feasTolerance := FEASTOL absTolerance := ABSTOL relTolerance := RELTOL maxIter := MAXITERS if solopts.FeasTol > 0.0 { feasTolerance = solopts.FeasTol } if solopts.AbsTol > 0.0 { absTolerance = solopts.AbsTol } if solopts.RelTol > 0.0 { relTolerance = solopts.RelTol } if solopts.MaxIter > 0 { maxIter = solopts.MaxIter } if q == nil { err = errors.New("'q' must be non-nil MatrixVariable with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq := make([]int, 0) indq = append(indq, dims.At("l")[0]) for _, k := range dims.At("q") { indq = append(indq, indq[len(indq)-1]+k) } // Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G. inds := make([]int, 0) inds = append(inds, indq[len(indq)-1]) for _, k := range dims.At("s") { inds = append(inds, inds[len(inds)-1]+k*k) } if P == nil { err = errors.New("'P' must be non-nil MatrixVarP interface.") return } fP := func(u, v MatrixVariable, alpha, beta float64) error { return P.Pf(u, v, alpha, beta) } if G == nil { err = errors.New("'G' must be non-nil MatrixG interface.") return } fG := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return G.Gf(x, y, alpha, beta, trans) } // Check A and set defaults if it is nil fA := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return A.Af(x, y, alpha, beta, trans) } // Check b and set defaults if it is nil if b == nil { err = errors.New("'b' must be non-nil MatrixVariable interface.") return } // kktsolver(W) returns a routine for solving 3x3 block KKT system // // [ 0 A' G'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ]. // [ G 0 -W' ] [ uz ] [ bz ] if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } ws3 := matrix.FloatZeros(cdim, 1) wz3 := matrix.FloatZeros(cdim, 1) checkpnt.AddMatrixVar("ws3", ws3) checkpnt.AddMatrixVar("wz3", wz3) // res := func(ux, uy MatrixVariable, uz, us *matrix.FloatMatrix, vx, vy MatrixVariable, vz, vs *matrix.FloatMatrix, W *sets.FloatMatrixSet, lmbda *matrix.FloatMatrix) (err error) { // Evaluates residual in Newton equations: // // [ vx ] [ vx ] [ 0 ] [ P A' G' ] [ ux ] // [ vy ] := [ vy ] - [ 0 ] - [ A 0 0 ] * [ uy ] // [ vz ] [ vz ] [ W'*us ] [ G 0 0 ] [ W^{-1}*uz ] // // vs := vs - lmbda o (uz + us). // vx := vx - P*ux - A'*uy - G'*W^{-1}*uz minor := checkpnt.MinorTop() checkpnt.Check("00res", minor) fP(ux, vx, -1.0, 1.0) fA(uy, vx, -1.0, 1.0, la.OptTrans) blas.Copy(uz, wz3) scale(wz3, W, true, false) fG(&matrixVar{wz3}, vx, -1.0, 1.0, la.OptTrans) // vy := vy - A*ux fA(ux, vy, -1.0, 1.0, la.OptNoTrans) checkpnt.Check("50res", minor) // vz := vz - G*ux - W'*us fG(ux, &matrixVar{vz}, -1.0, 1.0, la.OptNoTrans) blas.Copy(us, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, vz, -1.0) // vs := vs - lmbda o (uz + us) blas.Copy(us, ws3) blas.AxpyFloat(uz, ws3, 1.0) sprod(ws3, lmbda, dims, 0, la.OptDiag) blas.AxpyFloat(ws3, vs, -1.0) checkpnt.Check("90res", minor) return } resx0 := math.Max(1.0, math.Sqrt(q.Dot(q))) resy0 := math.Max(1.0, math.Sqrt(b.Dot(b))) resz0 := math.Max(1.0, snrm2(h, dims, 0)) //fmt.Printf("resx0: %.17f, resy0: %.17f, resz0: %.17f\n", resx0, resy0, resz0) var x, y, dx, dy, rx, ry MatrixVariable var z, s, ds, dz, rz *matrix.FloatMatrix var lmbda, lmbdasq, sigs, sigz *matrix.FloatMatrix var W *sets.FloatMatrixSet var f, f3 KKTFuncVar var resx, resy, resz, step, sigma, mu, eta float64 var gap, pcost, dcost, relgap, pres, dres, f0 float64 if cdim == 0 { // Solve // // [ P A' ] [ x ] [ -q ] // [ ] [ ] = [ ]. // [ A 0 ] [ y ] [ b ] // Wtmp := sets.NewFloatSet("d", "di", "beta", "v", "r", "rti") Wtmp.Set("d", matrix.FloatZeros(0, 1)) Wtmp.Set("di", matrix.FloatZeros(0, 1)) f3, err = kktsolver(Wtmp) if err != nil { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("2: Rank(A) < p or Rank(([P; A; G;]) < n : " + s) return } x = q.Copy() x.Scal(0.0) y = b.Copy() f3(x, y, matrix.FloatZeros(0, 1)) // dres = || P*x + q + A'*y || / resx0 rx = q.Copy() fP(x, rx, 1.0, 1.0) pcost = 0.5 * (x.Dot(rx) + x.Dot(q)) fA(y, rx, 1.0, 1.0, la.OptTrans) dres = math.Sqrt(rx.Dot(rx) / resx0) ry = b.Copy() fA(x, ry, 1.0, -1.0, la.OptNoTrans) pres = math.Sqrt(ry.Dot(ry) / resy0) relgap = 0.0 if pcost == 0.0 { relgap = math.NaN() } sol.Result = sets.NewFloatSet("x", "y", "s", "z") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("s", matrix.FloatZeros(0, 1)) sol.Result.Set("z", matrix.FloatZeros(0, 1)) sol.Status = Optimal sol.Gap = 0.0 sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = pcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = 0.0 sol.DualSlack = 0.0 return } x = q.Copy() y = b.Copy() s = matrix.FloatZeros(cdim, 1) z = matrix.FloatZeros(cdim, 1) checkpnt.AddVerifiable("x", x) checkpnt.AddVerifiable("y", y) checkpnt.AddMatrixVar("s", s) checkpnt.AddMatrixVar("z", z) var ts, tz, nrms, nrmz float64 if initvals == nil { // Factor // // [ 0 A' G' ] // [ A 0 0 ]. // [ G 0 -I ] // W = sets.NewFloatSet("d", "di", "v", "beta", "r", "rti") W.Set("d", matrix.FloatOnes(dims.At("l")[0], 1)) W.Set("di", matrix.FloatOnes(dims.At("l")[0], 1)) W.Set("beta", matrix.FloatOnes(len(dims.At("q")), 1)) for _, n := range dims.At("q") { vm := matrix.FloatZeros(n, 1) vm.SetIndex(0, 1.0) W.Append("v", vm) } for _, n := range dims.At("s") { W.Append("r", matrix.FloatIdentity(n)) W.Append("rti", matrix.FloatIdentity(n)) } checkpnt.AddScaleVar(W) f, err = kktsolver(W) if err != nil { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("3: Rank(A) < p or Rank([P; G; A]) < n : " + s) return } // Solve // // [ P A' G' ] [ x ] [ -q ] // [ A 0 0 ] * [ y ] = [ b ]. // [ G 0 -I ] [ z ] [ h ] mCopy(q, x) x.Scal(-1.0) mCopy(b, y) blas.Copy(h, z) checkpnt.Check("00init", 1) err = f(x, y, z) if err != nil { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("4: Rank(A) < p or Rank([P; G; A]) < n : " + s) return } blas.Copy(z, s) blas.ScalFloat(s, -1.0) checkpnt.Check("05init", 1) nrms = snrm2(s, dims, 0) ts, _ = maxStep(s, dims, 0, nil) //fmt.Printf("nrms = %.7f, ts = %.7f\n", nrms, ts) if ts >= -1e-8*math.Max(nrms, 1.0) { // a = 1.0 + ts a := 1.0 + ts is := make([]int, 0) // indexes s[:dims['l']] is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) // indexes s[indq[:-1]] is = append(is, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") // indexes s[ind:ind+m*m:m+1] (diagonal) for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { s.SetIndex(k, a+s.GetIndex(k)) } } nrmz = snrm2(z, dims, 0) tz, _ = maxStep(z, dims, 0, nil) //fmt.Printf("nrmz = %.7f, tz = %.7f\n", nrmz, tz) if tz >= -1e-8*math.Max(nrmz, 1.0) { a := 1.0 + tz is := make([]int, 0) is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) is = append(is, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { z.SetIndex(k, a+z.GetIndex(k)) } } } else { ix := initvals.At("x")[0] if ix != nil { mCopy(&matrixVar{ix}, x) } else { x.Scal(0.0) } is := initvals.At("s")[0] if is != nil { blas.Copy(is, s) } else { iset := make([]int, 0) iset = append(iset, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) iset = append(iset, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { iset = append(iset, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range iset { s.SetIndex(k, 1.0) } } iy := initvals.At("y")[0] if iy != nil { mCopy(&matrixVar{iy}, y) } else { y.Scal(0.0) } iz := initvals.At("z")[0] if iz != nil { blas.Copy(iz, z) } else { iset := make([]int, 0) iset = append(iset, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) iset = append(iset, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { iset = append(iset, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range iset { z.SetIndex(k, 1.0) } } } rx = q.Copy() ry = b.Copy() rz = matrix.FloatZeros(cdim, 1) dx = x.Copy() dy = y.Copy() dz = matrix.FloatZeros(cdim, 1) ds = matrix.FloatZeros(cdim, 1) lmbda = matrix.FloatZeros(cdim_diag, 1) lmbdasq = matrix.FloatZeros(cdim_diag, 1) sigs = matrix.FloatZeros(dims.Sum("s"), 1) sigz = matrix.FloatZeros(dims.Sum("s"), 1) checkpnt.AddVerifiable("rx", rx) checkpnt.AddVerifiable("ry", ry) checkpnt.AddVerifiable("dx", dx) checkpnt.AddVerifiable("dy", dy) //checkpnt.AddMatrixVar("rs", rs) checkpnt.AddMatrixVar("rz", rz) checkpnt.AddMatrixVar("ds", ds) checkpnt.AddMatrixVar("dz", dz) checkpnt.AddMatrixVar("lmbda", lmbda) checkpnt.AddMatrixVar("lmbdasq", lmbdasq) //var resx, resy, resz, step, sigma, mu, eta float64 //var gap, pcost, dcost, relgap, pres, dres, f0 float64 checkpnt.AddFloatVar("resx", &resx) checkpnt.AddFloatVar("resy", &resy) checkpnt.AddFloatVar("resz", &resz) checkpnt.AddFloatVar("step", &step) checkpnt.AddFloatVar("gap", &gap) checkpnt.AddFloatVar("dcost", &dcost) checkpnt.AddFloatVar("pcost", &pcost) checkpnt.AddFloatVar("dres", &dres) checkpnt.AddFloatVar("pres", &pres) checkpnt.AddFloatVar("relgap", &relgap) checkpnt.AddFloatVar("sigma", &sigma) var WS fVarClosure gap = sdot(s, z, dims, 0) for iter := 0; iter < maxIter+1; iter++ { checkpnt.MajorNext() checkpnt.Check("loopstart", 10) // f0 = (1/2)*x'*P*x + q'*x + r and rx = P*x + q + A'*y + G'*z. mCopy(q, rx) fP(x, rx, 1.0, 1.0) f0 = 0.5 * (x.Dot(rx) + x.Dot(q)) fA(y, rx, 1.0, 1.0, la.OptTrans) fG(&matrixVar{z}, rx, 1.0, 1.0, la.OptTrans) resx = math.Sqrt(rx.Dot(rx)) // ry = A*x - b mCopy(b, ry) fA(x, ry, 1.0, -1.0, la.OptNoTrans) resy = math.Sqrt(ry.Dot(ry)) // rz = s + G*x - h blas.Copy(s, rz) blas.AxpyFloat(h, rz, -1.0) fG(x, &matrixVar{rz}, 1.0, 1.0, la.OptNoTrans) resz = snrm2(rz, dims, 0) //fmt.Printf("resx: %.17f, resy: %.17f, resz: %.17f\n", resx, resy, resz) // Statistics for stopping criteria. // pcost = (1/2)*x'*P*x + q'*x // dcost = (1/2)*x'*P*x + q'*x + y'*(A*x-b) + z'*(G*x-h) ' // = (1/2)*x'*P*x + q'*x + y'*(A*x-b) + z'*(G*x-h+s) - z'*s // = (1/2)*x'*P*x + q'*x + y'*ry + z'*rz - gap pcost = f0 dcost = f0 + y.Dot(ry) + sdot(z, rz, dims, 0) - gap if pcost < 0.0 { relgap = gap / -pcost } else if dcost > 0.0 { relgap = gap / dcost } else { relgap = math.NaN() } pres = math.Max(resy/resy0, resz/resz0) dres = resx / resx0 if solopts.ShowProgress { if iter == 0 { // show headers of something fmt.Printf("% 10s% 12s% 10s% 8s% 7s\n", "pcost", "dcost", "gap", "pres", "dres") } // show something fmt.Printf("%2d: % 8.4e % 8.4e % 4.0e% 7.0e% 7.0e\n", iter, pcost, dcost, gap, pres, dres) } checkpnt.Check("stoptest", 100) if pres <= feasTolerance && dres <= feasTolerance && (gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance)) || iter == maxIter { ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) if iter == maxIter { // terminated on max iterations. sol.Status = Unknown err = errors.New("Terminated (maximum iterations reached)") fmt.Printf("Terminated (maximum iterations reached)\n") return } // optimal solution found //fmt.Print("Optimal solution.\n") err = nil sol.Result = sets.NewFloatSet("x", "y", "s", "z") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("s", s) sol.Result.Set("z", z) sol.Status = Optimal sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.PrimalResidualCert = math.NaN() sol.DualResidualCert = math.NaN() sol.Iterations = iter return } // Compute initial scaling W and scaled iterates: // // W * z = W^{-T} * s = lambda. // // lmbdasq = lambda o lambda. if iter == 0 { W, err = computeScaling(s, z, lmbda, dims, 0) checkpnt.AddScaleVar(W) } ssqr(lmbdasq, lmbda, dims, 0) f3, err = kktsolver(W) if err != nil { if iter == 0 { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("5: Rank(A) < p or Rank([P; A; G]) < n : " + s) return } else { ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) // terminated (singular KKT matrix) fmt.Printf("Terminated (singular KKT matrix).\n") err = errors.New("Terminated (singular KKT matrix).") sol.Result = sets.NewFloatSet("x", "y", "s", "z") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("s", s) sol.Result.Set("z", z) sol.Status = Unknown sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.Iterations = iter return } } // f4_no_ir(x, y, z, s) solves // // [ 0 ] [ P A' G' ] [ ux ] [ bx ] // [ 0 ] + [ A 0 0 ] * [ uy ] = [ by ] // [ W'*us ] [ G 0 0 ] [ W^{-1}*uz ] [ bz ] // // lmbda o (uz + us) = bs. // // On entry, x, y, z, s contain bx, by, bz, bs. // On exit, they contain ux, uy, uz, us. f4_no_ir := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) error { // Solve // // [ P A' G' ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ] // [ G 0 -W'*W ] [ W^{-1}*uz ] [ bz - W'*(lmbda o\ bs) ] // // us = lmbda o\ bs - uz. // // On entry, x, y, z, s contains bx, by, bz, bs. // On exit they contain x, y, z, s. minor := checkpnt.MinorTop() checkpnt.Check("f4_no_ir_start", minor) // s := lmbda o\ s // = lmbda o\ bs sinv(s, lmbda, dims, 0) // z := z - W'*s // = bz - W'*(lambda o\ bs) blas.Copy(s, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, z, -1.0) checkpnt.Check("f4_no_ir_f3", minor+50) err := f3(x, y, z) if err != nil { return err } checkpnt.Check("f4_no_ir_f3", minor+60) // s := s - z // = lambda o\ bs - uz. blas.AxpyFloat(z, s, -1.0) checkpnt.Check("f4_no_ir_f3", minor+90) return nil } if iter == 0 { if refinement > 0 || solopts.Debug { WS.wx = q.Copy() WS.wy = y.Copy() WS.ws = matrix.FloatZeros(cdim, 1) WS.wz = matrix.FloatZeros(cdim, 1) checkpnt.AddVerifiable("wx", WS.wx) checkpnt.AddVerifiable("wy", WS.wy) checkpnt.AddMatrixVar("ws", WS.ws) checkpnt.AddMatrixVar("wz", WS.wz) } if refinement > 0 { WS.wx2 = q.Copy() WS.wy2 = y.Copy() WS.ws2 = matrix.FloatZeros(cdim, 1) WS.wz2 = matrix.FloatZeros(cdim, 1) checkpnt.AddVerifiable("wx2", WS.wx2) checkpnt.AddVerifiable("wy2", WS.wy2) checkpnt.AddMatrixVar("ws2", WS.ws2) checkpnt.AddMatrixVar("wz2", WS.wz2) } } f4 := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) (err error) { minor := checkpnt.MinorTop() checkpnt.Check("f4start", minor) err = nil if refinement > 0 || solopts.Debug { mCopy(x, WS.wx) mCopy(y, WS.wy) blas.Copy(z, WS.wz) blas.Copy(s, WS.ws) } checkpnt.MinorPush(minor + 100) err = f4_no_ir(x, y, z, s) checkpnt.MinorPop() for i := 0; i < refinement; i++ { mCopy(WS.wx, WS.wx2) mCopy(WS.wy, WS.wy2) blas.Copy(WS.wz, WS.wz2) blas.Copy(WS.ws, WS.ws2) checkpnt.MinorPush(minor + (i+1)*300) res(x, y, z, s, WS.wx2, WS.wy2, WS.wz2, WS.ws2, W, lmbda) checkpnt.MinorPop() checkpnt.MinorPush(minor + (i+1)*500) f4_no_ir(WS.wx2, WS.wy2, WS.wz2, WS.ws2) checkpnt.MinorPop() WS.wx2.Axpy(x, 1.0) WS.wy2.Axpy(y, 1.0) blas.AxpyFloat(WS.wz2, z, 1.0) blas.AxpyFloat(WS.ws2, s, 1.0) } checkpnt.Check("f4end", minor+1500) return } //var mu, sigma, eta float64 mu = gap / float64(dims.Sum("l", "s")+len(dims.At("q"))) sigma, eta = 0.0, 0.0 for i := 0; i < 2; i++ { // Solve // // [ 0 ] [ P A' G' ] [ dx ] // [ 0 ] + [ A 0 0 ] * [ dy ] = -(1 - eta) * r // [ W'*ds ] [ G 0 0 ] [ W^{-1}*dz ] // // lmbda o (dz + ds) = -lmbda o lmbda + sigma*mu*e (i=0) // lmbda o (dz + ds) = -lmbda o lmbda - dsa o dza // + sigma*mu*e (i=1) where dsa, dza // are the solution for i=0. minor_base := (i + 1) * 2000 // ds = -lmbdasq + sigma * mu * e (if i is 0) // = -lmbdasq - dsa o dza + sigma * mu * e (if i is 1), // where ds, dz are solution for i is 0. blas.ScalFloat(ds, 0.0) if correction && i == 1 { blas.AxpyFloat(ws3, ds, -1.0) } blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", dims.Sum("l", "q")}) ind := dims.At("l")[0] ds.Add(sigma*mu, matrix.MakeIndexSet(0, ind, 1)...) for _, m := range dims.At("q") { ds.SetIndex(ind, sigma*mu+ds.GetIndex(ind)) ind += m } ind2 := ind for _, m := range dims.At("s") { blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}, &la.IOpt{"offsetx", ind2}, &la.IOpt{"offsety", ind}) ds.Add(sigma*mu, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m ind2 += m } checkpnt.Check("00loop01", minor_base) // (dx, dy, dz) := -(1 - eta) * (rx, ry, rz) //blas.ScalFloat(dx, 0.0) //blas.AxpyFloat(rx, dx, -1.0+eta) dx.Scal(0.0) rx.Axpy(dx, -1.0+eta) dy.Scal(0.0) ry.Axpy(dy, -1.0+eta) blas.ScalFloat(dz, 0.0) blas.AxpyFloat(rz, dz, -1.0+eta) //fmt.Printf("== Calling f4 %d\n", i) //fmt.Printf("dx=\n%v\n", dx.ToString("%.17f")) //fmt.Printf("ds=\n%v\n", ds.ToString("%.17f")) //fmt.Printf("dz=\n%v\n", dz.ToString("%.17f")) //fmt.Printf("== Entering f4 %d\n", i) checkpnt.MinorPush(minor_base) err = f4(dx, dy, dz, ds) checkpnt.MinorPop() if err != nil { if iter == 0 { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("6: Rank(A) < p or Rank([P; A; G]) < n : " + s) return } else { ind = dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) return } } dsdz := sdot(ds, dz, dims, 0) if correction && i == 0 { blas.Copy(ds, ws3) sprod(ws3, dz, dims, 0) } // Maximum step to boundary. // // If i is 1, also compute eigenvalue decomposition of the 's' // blocks in ds, dz. The eigenvectors Qs, Qz are stored in // dsk, dzk. The eigenvalues are stored in sigs, sigz. scale2(lmbda, ds, dims, 0, false) scale2(lmbda, dz, dims, 0, false) checkpnt.Check("maxstep", minor_base+1500) if i == 0 { ts, _ = maxStep(ds, dims, 0, nil) tz, _ = maxStep(dz, dims, 0, nil) } else { ts, _ = maxStep(ds, dims, 0, sigs) tz, _ = maxStep(dz, dims, 0, sigz) } t := maxvec([]float64{0.0, ts, tz}) //fmt.Printf("== t=%.17f from %v\n", t, []float64{ts, tz}) if t == 0.0 { step = 1.0 } else { if i == 0 { step = math.Min(1.0, 1.0/t) } else { step = math.Min(1.0, STEP/t) } } if i == 0 { m := math.Max(0.0, 1.0-step+dsdz/gap*(step*step)) sigma = math.Pow(math.Min(1.0, m), float64(EXPON)) eta = 0.0 } //fmt.Printf("== step=%.17f sigma=%.17f dsdz=%.17f\n", step, sigma, dsdz) } checkpnt.Check("updatexy", 8000) dx.Axpy(x, step) dy.Axpy(y, step) //fmt.Printf("x=\n%v\n", x.ConvertToString()) //fmt.Printf("y=\n%v\n", y.ConvertToString()) //fmt.Printf("ds=\n%v\n", ds.ConvertToString()) //fmt.Printf("dz=\n%v\n", dz.ConvertToString()) // We will now replace the 'l' and 'q' blocks of ds and dz with // the updated iterates in the current scaling. // We also replace the 's' blocks of ds and dz with the factors // Ls, Lz in a factorization Ls*Ls', Lz*Lz' of the updated variables // in the current scaling. // ds := e + step*ds for nonlinear, 'l' and 'q' blocks. // dz := e + step*dz for nonlinear, 'l' and 'q' blocks. blas.ScalFloat(ds, step, &la.IOpt{"n", dims.Sum("l", "q")}) blas.ScalFloat(dz, step, &la.IOpt{"n", dims.Sum("l", "q")}) ind := dims.At("l")[0] is := matrix.MakeIndexSet(0, ind, 1) ds.Add(1.0, is...) dz.Add(1.0, is...) for _, m := range dims.At("q") { ds.SetIndex(ind, 1.0+ds.GetIndex(ind)) dz.SetIndex(ind, 1.0+dz.GetIndex(ind)) ind += m } checkpnt.Check("updatedsdz", 8010) // ds := H(lambda)^{-1/2} * ds and dz := H(lambda)^{-1/2} * dz. // // This replaces the 'l' and 'q' components of ds and dz with the // updated variables in the current scaling. // The 's' components of ds and dz are replaced with // // diag(lmbda_k)^{1/2} * Qs * diag(lmbda_k)^{1/2} // diag(lmbda_k)^{1/2} * Qz * diag(lmbda_k)^{1/2} scale2(lmbda, ds, dims, 0, true) scale2(lmbda, dz, dims, 0, true) checkpnt.Check("scale2", 8030) // sigs := ( e + step*sigs ) ./ lambda for 's' blocks. // sigz := ( e + step*sigz ) ./ lambda for 's' blocks. blas.ScalFloat(sigs, step) blas.ScalFloat(sigz, step) sigs.Add(1.0) sigz.Add(1.0) sdimsum := dims.Sum("s") qdimsum := dims.Sum("l", "q") blas.TbsvFloat(lmbda, sigs, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) blas.TbsvFloat(lmbda, sigz, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) ind2 := qdimsum ind3 := 0 sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] for i := 0; i < m; i++ { a := math.Sqrt(sigs.GetIndex(ind3 + i)) blas.ScalFloat(ds, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) a = math.Sqrt(sigz.GetIndex(ind3 + i)) blas.ScalFloat(dz, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) } ind2 += m * m ind3 += m } checkpnt.Check("updatescaling", 8050) err = updateScaling(W, lmbda, ds, dz) checkpnt.Check("afterscaling", 8060) // Unscale s, z, tau, kappa (unscaled variables are used only to // compute feasibility residuals). ind = dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, s, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(s, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, s, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(s, W, true, false) ind = dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, z, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(z, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, z, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(z, W, false, true) gap = blas.DotFloat(lmbda, lmbda) checkpnt.Check("eol", 8900) //fmt.Printf("== gap = %.17f\n", gap) } return }