コード例 #1
0
ファイル: gp.go プロジェクト: sguzwf/algorithm
func (gp *gpConvexProg) F1(x *matrix.FloatMatrix) (f, Df *matrix.FloatMatrix, err error) {
    f = nil
    Df = nil
    err = nil
    f = matrix.FloatZeros(gp.mnl+1, 1)
    Df = matrix.FloatZeros(gp.mnl+1, gp.n)
    y := gp.g.Copy()
    blas.GemvFloat(gp.F, x, y, 1.0, 1.0)

    for i, s := range gp.ind {
        start := s[0]
        stop := s[1]
        // yi := exp(yi) = exp(Fi*x+gi)
        ymax := maxvec(y.FloatArray()[start:stop])
        // ynew = exp(y[start:stop] - ymax)
        ynew := matrix.Exp(matrix.FloatVector(y.FloatArray()[start:stop]).Add(-ymax))
        y.SetIndexesFromArray(ynew.FloatArray(), matrix.Indexes(start, stop)...)

        // fi = log sum yi = log sum exp(Fi*x+gi)
        ysum := blas.AsumFloat(y, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})
        f.SetIndex(i, ymax+math.Log(ysum))

        blas.ScalFloat(y, 1.0/ysum, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})
        blas.GemvFloat(gp.F, y, Df, 1.0, 0.0, la.OptTrans, &la.IOpt{"m", stop - start},
            &la.IOpt{"incy", gp.mnl + 1}, &la.IOpt{"offseta", start},
            &la.IOpt{"offsetx", start}, &la.IOpt{"offsety", i})
    }
    return
}
コード例 #2
0
ファイル: tmult_test.go プロジェクト: sguzwf/algorithm
func _TestMultMV(t *testing.T) {
	bM := 100 * M
	bN := 100 * N
	A := matrix.FloatNormal(bM, bN)
	X := matrix.FloatNormal(bN, 1)
	Y1 := matrix.FloatZeros(bM, 1)
	Y0 := matrix.FloatZeros(bM, 1)

	Ar := A.FloatArray()
	Xr := X.FloatArray()
	Y1r := Y1.FloatArray()

	blas.GemvFloat(A, X, Y0, 1.0, 1.0)

	DMultMV(Y1r, Ar, Xr, 1.0, 1.0, NOTRANS, 1, A.LeadingIndex(), 1, 0, bN, 0, bM, 32, 32)
	t.Logf("Y0 == Y1: %v\n", Y0.AllClose(Y1))
	/*
	   if ! Y0.AllClose(Y1) {
	       y0 := Y0.SubMatrix(0, 0, 2, 1)
	       y1 := Y1.SubMatrix(0, 0, 2, 1)
	       t.Logf("y0=\n%v\n", y0)
	       t.Logf("y1=\n%v\n", y1)
	   }
	*/
}
コード例 #3
0
ファイル: tmult_test.go プロジェクト: sguzwf/algorithm
func _TestMultMVTransA(t *testing.T) {
	bM := 1000 * M
	bN := 1000 * N
	A := matrix.FloatNormal(bN, bM)
	X := matrix.FloatWithValue(bN, 1, 1.0)
	Y1 := matrix.FloatZeros(bM, 1)
	Y0 := matrix.FloatZeros(bM, 1)

	Ar := A.FloatArray()
	Xr := X.FloatArray()
	Y1r := Y1.FloatArray()

	blas.GemvFloat(A, X, Y0, 1.0, 1.0, linalg.OptTrans)

	DMultMV(Y1r, Ar, Xr, 1.0, 1.0, TRANSA, 1, A.LeadingIndex(), 1, 0, bN, 0, bM, 4, 4)
	ok := Y0.AllClose(Y1)
	t.Logf("Y0 == Y1: %v\n", ok)
	if !ok {
		var y1, y0 matrix.FloatMatrix
		Y1.SubMatrix(&y1, 0, 0, 5, 1)
		t.Logf("Y1[0:5]:\n%v\n", y1)
		Y0.SubMatrix(&y0, 0, 0, 5, 1)
		t.Logf("Y0[0:5]:\n%v\n", y0)
	}
}
コード例 #4
0
ファイル: misc.go プロジェクト: sguzwf/algorithm
/*
   Matrix-vector multiplication.

   A is a matrix or spmatrix of size (m, n) where

       N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] )

   representing a mapping from R^n to S.

   If trans is 'N':

       y := alpha*A*x + beta * y   (trans = 'N').

   x is a vector of length n.  y is a vector of length N.

   If trans is 'T':

       y := alpha*A'*x + beta * y  (trans = 'T').

   x is a vector of length N.  y is a vector of length n.

   The 's' components in S are stored in unpacked 'L' storage.
*/
func sgemv(A, x, y *matrix.FloatMatrix, alpha, beta float64, dims *sets.DimensionSet, opts ...la_.Option) error {

	m := dims.Sum("l", "q") + dims.SumSquared("s")
	n := la_.GetIntOpt("n", -1, opts...)
	if n == -1 {
		n = A.Cols()
	}
	trans := la_.GetIntOpt("trans", int(la_.PNoTrans), opts...)
	offsetX := la_.GetIntOpt("offsetx", 0, opts...)
	offsetY := la_.GetIntOpt("offsety", 0, opts...)
	offsetA := la_.GetIntOpt("offseta", 0, opts...)

	if trans == int(la_.PTrans) && alpha != 0.0 {
		trisc(x, dims, offsetX)
		//fmt.Printf("trisc x=\n%v\n", x.ConvertToString())
	}
	//fmt.Printf("alpha=%.4f beta=%.4f m=%d n=%d\n", alpha, beta, m, n)
	//fmt.Printf("A=\n%v\nx=\n%v\ny=\n%v\n", A, x.ConvertToString(), y.ConvertToString())
	err := blas.GemvFloat(A, x, y, alpha, beta, &la_.IOpt{"trans", trans},
		&la_.IOpt{"n", n}, &la_.IOpt{"m", m}, &la_.IOpt{"offseta", offsetA},
		&la_.IOpt{"offsetx", offsetX}, &la_.IOpt{"offsety", offsetY})
	//fmt.Printf("gemv y=\n%v\n", y.ConvertToString())

	if trans == int(la_.PTrans) && alpha != 0.0 {
		triusc(x, dims, offsetX)
	}
	return err
}
コード例 #5
0
ファイル: mvperf.go プロジェクト: sguzwf/algorithm
func CTestGemv(m, n, p int) (fnc func(), A, X, Y *matrix.FloatMatrix) {
	A = matrix.FloatNormal(m, n)
	X = matrix.FloatNormal(n, 1)
	Y = matrix.FloatZeros(m, 1)
	fnc = func() {
		blas.GemvFloat(A, X, Y, 1.0, 1.0)
	}
	return
}
コード例 #6
0
ファイル: gp.go プロジェクト: sguzwf/algorithm
func (gp *gpConvexProg) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) {

    err = nil
    f = matrix.FloatZeros(gp.mnl+1, 1)
    Df = matrix.FloatZeros(gp.mnl+1, gp.n)
    H = matrix.FloatZeros(gp.n, gp.n)
    y := gp.g.Copy()
    Fsc := matrix.FloatZeros(gp.maxK, gp.n)
    blas.GemvFloat(gp.F, x, y, 1.0, 1.0)
    //fmt.Printf("y=\n%v\n", y.ToString("%.3f"))

    for i, s := range gp.ind {
        start := s[0]
        stop := s[1]

        // yi := exp(yi) = exp(Fi*x+gi)
        ymax := maxvec(y.FloatArray()[start:stop])
        ynew := matrix.Exp(matrix.FloatVector(y.FloatArray()[start:stop]).Add(-ymax))
        y.SetIndexesFromArray(ynew.FloatArray(), matrix.Indexes(start, stop)...)

        // fi = log sum yi = log sum exp(Fi*x+gi)
        ysum := blas.AsumFloat(y, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})

        f.SetIndex(i, ymax+math.Log(ysum))
        blas.ScalFloat(y, 1.0/ysum, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})
        blas.GemvFloat(gp.F, y, Df, 1.0, 0.0, la.OptTrans, &la.IOpt{"m", stop - start},
            &la.IOpt{"incy", gp.mnl + 1}, &la.IOpt{"offseta", start},
            &la.IOpt{"offsetx", start}, &la.IOpt{"offsety", i})

        Fsc.SetSubMatrix(0, 0, gp.F.GetSubMatrix(start, 0, stop-start))

        for k := start; k < stop; k++ {
            blas.AxpyFloat(Df, Fsc, -1.0, &la.IOpt{"n", gp.n},
                &la.IOpt{"incx", gp.mnl + 1}, &la.IOpt{"incy", Fsc.Rows()},
                &la.IOpt{"offsetx", i}, &la.IOpt{"offsety", k - start})
            blas.ScalFloat(Fsc, math.Sqrt(y.GetIndex(k)),
                &la.IOpt{"inc", Fsc.Rows()}, &la.IOpt{"offset", k - start})
        }
        // H += z[i]*Hi = z[i] *Fisc' * Fisc
        blas.SyrkFloat(Fsc, H, z.GetIndex(i), 1.0, la.OptTrans,
            &la.IOpt{"k", stop - start})
    }
    return
}
コード例 #7
0
ファイル: mvperf.go プロジェクト: sguzwf/algorithm
func CTestGemvTransA(m, n, p int) (fnc func(), A, X, Y *matrix.FloatMatrix) {
	A = matrix.FloatNormal(n, m)
	X = matrix.FloatNormal(n, 1)
	Y = matrix.FloatZeros(m, 1)
	A = A.Transpose()
	fnc = func() {
		blas.GemvFloat(A, X, Y, 1.0, 1.0, linalg.OptTrans)
	}
	return
}
コード例 #8
0
ファイル: cp.go プロジェクト: sguzwf/algorithm
func (a *epMatrixA) Af(u, v MatrixVariable, alpha, beta float64, trans la.Option) (err error) {
	err = nil
	if trans.Equal(la.OptNoTrans) {
		ue, u_ok := u.(*epigraph)
		ve := v.Matrix()
		if !u_ok {
			return errors.New("'u' not a epigraph")
		}
		err = blas.GemvFloat(a.A, ue.m(), ve, alpha, beta)
	} else {
		ve, v_ok := v.(*epigraph)
		ue := u.Matrix()
		if !v_ok {
			return errors.New("'v' not a epigraph")
		}
		err = blas.GemvFloat(a.A, ue, ve.m(), alpha, beta, trans)
		ve.set(ve.t() * beta)
	}
	return
}
コード例 #9
0
ファイル: cp.go プロジェクト: sguzwf/algorithm
func (d *epigraphDf) Df(u, v MatrixVariable, alpha, beta float64, trans la.Option) (err error) {
	err = nil
	if trans.Equal(la.OptNoTrans) {
		u_e, u_ok := u.(*epigraph)
		v_e := v.Matrix()
		if !u_ok {
			fmt.Printf("Df: not a epigraph\n")
			return errors.New("'u' not a epigraph")
		}
		err = blas.GemvFloat(d.df, u_e.m(), v_e, alpha, beta, la.OptNoTrans)
		v_e.Add(-alpha*u_e.t(), 0)
	} else {
		v_e, v_ok := v.(*epigraph)
		u_e := u.Matrix()
		if !v_ok {
			fmt.Printf("Df: not a epigraph\n")
			return errors.New("'v' not a epigraph")
		}
		err = blas.GemvFloat(d.df, u_e, v_e.m(), alpha, beta, la.OptTrans)
		v_e.set(-alpha*u_e.GetIndex(0) + beta*v_e.t())
	}
	return
}
コード例 #10
0
ファイル: tmult_test.go プロジェクト: sguzwf/algorithm
func _TestMultMVSmall(t *testing.T) {
	bM := 5
	bN := 4
	A := matrix.FloatNormal(bM, bN)
	X := matrix.FloatVector([]float64{1.0, 2.0, 3.0, 4.0})
	Y1 := matrix.FloatZeros(bM, 1)
	Y0 := matrix.FloatZeros(bM, 1)

	Ar := A.FloatArray()
	Xr := X.FloatArray()
	Y1r := Y1.FloatArray()

	blas.GemvFloat(A, X, Y0, 1.0, 1.0)

	DMultMV(Y1r, Ar, Xr, 1.0, 1.0, NOTRANS, 1, A.LeadingIndex(), 1, 0, bN, 0, bM, 4, 4)
	ok := Y0.AllClose(Y1)
	t.Logf("Y0 == Y1: %v\n", ok)
	if !ok {
		t.Logf("blas: Y=A*X\n%v\n", Y0)
		t.Logf("Y1: Y1 = A*X\n%v\n", Y1)
	}
}
コード例 #11
0
ファイル: interfaces.go プロジェクト: sguzwf/algorithm
func (a *matrixVarA) Af(u, v MatrixVariable, alpha, beta float64, trans la.Option) (err error) {
	err = blas.GemvFloat(a.mA, u.Matrix(), v.Matrix(), alpha, beta, trans)
	return
}
コード例 #12
0
ファイル: kkt.go プロジェクト: sguzwf/algorithm
func kktChol2(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 {
		return nil, errors.New("'chol2' solver only for problems with no second-order or " +
			"semidefinite cone constraints")
	}

	p, n := A.Size()
	ml := dims.At("l")[0]
	F := &chol2Data{firstcall: true, singular: false, A: A, G: G, dims: dims}

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}
		if F.firstcall {
			F.Gs = matrix.FloatZeros(F.G.Size())
			if mnl > 0 {
				F.Dfs = matrix.FloatZeros(Df.Size())
			}
			F.S = matrix.FloatZeros(n, n)
			F.K = matrix.FloatZeros(p, p)
			checkpnt.AddMatrixVar("Gs", F.Gs)
			checkpnt.AddMatrixVar("Dfs", F.Dfs)
			checkpnt.AddMatrixVar("S", F.S)
			checkpnt.AddMatrixVar("K", F.K)
		}

		if mnl > 0 {
			dnli := matrix.FloatZeros(mnl, mnl)
			dnli.SetIndexesFromArray(W.At("dnli")[0].FloatArray(), matrix.DiagonalIndexes(dnli)...)
			blas.GemmFloat(dnli, Df, F.Dfs, 1.0, 0.0)
		}
		checkpnt.Check("02factor_chol2", minor)
		di := matrix.FloatZeros(ml, ml)
		di.SetIndexesFromArray(W.At("di")[0].FloatArray(), matrix.DiagonalIndexes(di)...)
		err = blas.GemmFloat(di, G, F.Gs, 1.0, 0.0)
		checkpnt.Check("06factor_chol2", minor)

		if F.firstcall {
			blas.SyrkFloat(F.Gs, F.S, 1.0, 0.0, la.OptTrans)
			if mnl > 0 {
				blas.SyrkFloat(F.Dfs, F.S, 1.0, 1.0, la.OptTrans)
			}
			if H != nil {
				F.S.Plus(H)
			}
			checkpnt.Check("10factor_chol2", minor)
			err = lapack.Potrf(F.S)
			if err != nil {
				err = nil // reset error
				F.singular = true
				// original code recreates F.S as dense if it is sparse and
				// A is dense, we don't do it as currently no sparse matrices
				//F.S = matrix.FloatZeros(n, n)
				//checkpnt.AddMatrixVar("S", F.S)
				blas.SyrkFloat(F.Gs, F.S, 1.0, 0.0, la.OptTrans)
				if mnl > 0 {
					blas.SyrkFloat(F.Dfs, F.S, 1.0, 1.0, la.OptTrans)
				}
				checkpnt.Check("14factor_chol2", minor)
				blas.SyrkFloat(F.A, F.S, 1.0, 1.0, la.OptTrans)
				if H != nil {
					F.S.Plus(H)
				}
				lapack.Potrf(F.S)
			}
			F.firstcall = false
			checkpnt.Check("20factor_chol2", minor)
		} else {
			blas.SyrkFloat(F.Gs, F.S, 1.0, 0.0, la.OptTrans)
			if mnl > 0 {
				blas.SyrkFloat(F.Dfs, F.S, 1.0, 1.0, la.OptTrans)
			}
			if H != nil {
				F.S.Plus(H)
			}
			checkpnt.Check("40factor_chol2", minor)
			if F.singular {
				blas.SyrkFloat(F.A, F.S, 1.0, 1.0, la.OptTrans)
			}
			lapack.Potrf(F.S)
			checkpnt.Check("50factor_chol2", minor)
		}

		// Asct := L^{-1}*A'.  Factor K = Asct'*Asct.
		Asct := F.A.Transpose()
		blas.TrsmFloat(F.S, Asct, 1.0)
		blas.SyrkFloat(Asct, F.K, 1.0, 0.0, la.OptTrans)
		lapack.Potrf(F.K)
		checkpnt.Check("90factor_chol2", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ H          A'  GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0   0          ] * [ uy   ] = [ by        ]
			//     [ W^{-T}*GG  0   -I         ]   [ W*uz ]   [ W^{-T}*bz ]
			//
			// and return ux, uy, W*uz.
			//
			// If not F['singular']:
			//
			//     K*uy = A * S^{-1} * ( bx + GG'*W^{-1}*W^{-T}*bz ) - by
			//     S*ux = bx + GG'*W^{-1}*W^{-T}*bz - A'*uy
			//     W*uz = W^{-T} * ( GG*ux - bz ).
			//
			// If F['singular']:
			//
			//     K*uy = A * S^{-1} * ( bx + GG'*W^{-1}*W^{-T}*bz + A'*by )
			//            - by
			//     S*ux = bx + GG'*W^{-1}*W^{-T}*bz + A'*by - A'*y.
			//     W*uz = W^{-T} * ( GG*ux - bz ).

			minor := 0
			if !checkpnt.MinorEmpty() {
				minor = checkpnt.MinorTop()
			}

			// z := W^{-1} * z = W^{-1} * bz
			scale(z, W, true, true)
			checkpnt.Check("10solve_chol2", minor)

			// If not F['singular']:
			//     x := L^{-1} * P * (x + GGs'*z)
			//        = L^{-1} * P * (x + GG'*W^{-1}*W^{-T}*bz)
			//
			// If F['singular']:
			//     x := L^{-1} * P * (x + GGs'*z + A'*y))
			//        = L^{-1} * P * (x + GG'*W^{-1}*W^{-T}*bz + A'*y)
			if mnl > 0 {
				blas.GemvFloat(F.Dfs, z, x, 1.0, 1.0, la.OptTrans)
			}
			blas.GemvFloat(F.Gs, z, x, 1.0, 1.0, la.OptTrans, &la.IOpt{"offsetx", mnl})
			//checkpnt.Check("20solve_chol2", minor)
			if F.singular {
				blas.GemvFloat(F.A, y, x, 1.0, 1.0, la.OptTrans)
			}
			checkpnt.Check("30solve_chol2", minor)
			blas.TrsvFloat(F.S, x)
			//checkpnt.Check("50solve_chol2", minor)

			// y := K^{-1} * (Asc*x - y)
			//    = K^{-1} * (A * S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz) - by)
			//      (if not F['singular'])
			//    = K^{-1} * (A * S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz +
			//      A'*by) - by)
			//      (if F['singular']).
			blas.GemvFloat(Asct, x, y, 1.0, -1.0, la.OptTrans)
			//checkpnt.Check("55solve_chol2", minor)
			lapack.Potrs(F.K, y)
			//checkpnt.Check("60solve_chol2", minor)

			// x := P' * L^{-T} * (x - Asc'*y)
			//    = S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz - A'*y)
			//      (if not F['singular'])
			//    = S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz + A'*by - A'*y)
			//      (if F['singular'])
			blas.GemvFloat(Asct, y, x, -1.0, 1.0)
			blas.TrsvFloat(F.S, x, la.OptTrans)
			checkpnt.Check("70solve_chol2", minor)

			// W*z := GGs*x - z = W^{-T} * (GG*x - bz)
			if mnl > 0 {
				blas.GemvFloat(F.Dfs, x, z, 1.0, -1.0)
			}
			blas.GemvFloat(F.Gs, x, z, 1.0, -1.0, &la.IOpt{"offsety", mnl})

			checkpnt.Check("90solve_chol2", minor)
			return nil
		}
		return solve, err
	}
	return factor, nil
}
コード例 #13
0
ファイル: tmult_test.go プロジェクト: sguzwf/algorithm
func TestMultMVTransASmall(t *testing.T) {
	data6 := [][]float64{
		[]float64{-1.59e+00, 6.56e-02, 2.14e-01, 6.79e-01, 2.93e-01, 5.24e-01},
		[]float64{4.28e-01, 1.57e-01, 3.81e-01, 2.19e-01, 2.97e-01, 2.83e-02},
		[]float64{3.02e-01, 9.70e-02, 3.18e-01, 2.03e-01, 7.53e-01, 1.58e-01},
		[]float64{1.99e-01, 3.01e-01, 4.69e-01, 3.61e-01, 2.07e-01, 6.07e-01},
		[]float64{1.93e-01, 5.15e-01, 2.83e-01, 5.71e-01, 8.65e-01, 9.75e-01},
		[]float64{3.13e-01, 8.14e-01, 2.93e-01, 8.62e-01, 6.97e-01, 7.95e-02}}
	data5 := [][]float64{
		[]float64{1.57e-01, 3.81e-01, 2.19e-01, 2.97e-01, 2.83e-02},
		[]float64{9.70e-02, 3.18e-01, 2.03e-01, 7.53e-01, 1.58e-01},
		[]float64{3.01e-01, 4.69e-01, 3.61e-01, 2.07e-01, 6.07e-01},
		[]float64{5.15e-01, 2.83e-01, 5.71e-01, 8.65e-01, 9.75e-01},
		[]float64{8.14e-01, 2.93e-01, 8.62e-01, 6.97e-01, 7.95e-02}}
	data2 := []float64{4.28e-01, 3.02e-01, 1.99e-01, 1.93e-01, 3.13e-01}

	bM := 5
	bN := 4
	nb := 2
	//A := matrix.FloatNormal(bN, bM)
	//X := matrix.FloatWithValue(bN, 1, 1.0)

	A := matrix.FloatMatrixFromTable(data5, matrix.RowOrder)
	X := matrix.FloatNew(5, 1, data2)
	bM = A.Rows()
	bN = A.Cols()
	Ym := matrix.FloatZeros(3, bM)
	Y1 := matrix.FloatZeros(bM, 1)
	Y0 := matrix.FloatZeros(bM, 1)

	Ar := A.FloatArray()
	Xr := X.FloatArray()
	Y1r := Y1.FloatArray()

	blas.GemvFloat(A, X, Y0, 1.0, 1.0, linalg.OptTrans)

	DMultMV(Y1r, Ar, Xr, 1.0, 1.0, TRANSA, 1, A.LeadingIndex(), 1, 0, bN, 0, bM, nb, nb)
	ok := Y0.AllClose(Y1)
	t.Logf("Y0 == Y1: %v\n", ok)
	if ok || !ok {
		t.Logf("blas: Y=A.T*X\n%v\n", Y0)
		t.Logf("Y1: Y1 = A*X\n%v\n", Y1)
	}

	// zero Y0, Y1
	Y0.Scale(0.0)
	Y1.Scale(0.0)

	// test with matrix view; A is view
	var A0 matrix.FloatMatrix
	A6 := matrix.FloatMatrixFromTable(data6, matrix.RowOrder)
	A0.SubMatrixOf(A6, 1, 1)

	blas.GemvFloat(&A0, X, Y0, 1.0, 1.0, linalg.OptTrans)

	Ar = A0.FloatArray()
	DMultMV(Y1r, Ar, Xr, 1.0, 1.0, TRANSA, 1, A0.LeadingIndex(), 1, 0, bN, 0, bM, nb, nb)
	ok = Y0.AllClose(Y1)
	t.Logf("lda>rows: Y0 == Y1: %v\n", ok)
	if ok || !ok {
		t.Logf("blas: Y=A.T*X\n%v\n", Y0)
		t.Logf("Y1: Y1 = A*X\n%v\n", Y1)
	}

	// Y is view too.
	Y1.SubMatrixOf(Ym, 0, 0, 1, bM)
	Y1r = Y1.FloatArray()
	DMultMV(Y1r, Ar, Xr, 1.0, 1.0, TRANSA, Y1.LeadingIndex(), A0.LeadingIndex(), 1, 0, bN, 0, bM, nb, nb)
	ok = Y0.AllClose(Y1.Transpose())
	t.Logf("Y0 == Y1 row: %v\n", ok)
	t.Logf("row Y1: %v\n", Y1)
}
コード例 #14
0
ファイル: interfaces.go プロジェクト: sguzwf/algorithm
func (d *matrixVarDf) Df(u, v MatrixVariable, alpha, beta float64, trans la.Option) error {
	return blas.GemvFloat(d.df, u.Matrix(), v.Matrix(), alpha, beta, trans)
}
コード例 #15
0
ファイル: kkt.go プロジェクト: sguzwf/algorithm
//    Solution of KKT equations by reduction to a 2 x 2 system, a QR
//    factorization to eliminate the equality constraints, and a dense
//    Cholesky factorization of order n-p.
//
//    Computes the QR factorization
//
//        A' = [Q1, Q2] * [R; 0]
//
//    and returns a function that (1) computes the Cholesky factorization
//
//        Q_2^T * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2 = L * L^T,
//
//    given H, Df, W, where GG = [Df; G], and (2) returns a function for
//    solving
//
//        [ H    A'   GG'    ]   [ ux ]   [ bx ]
//        [ A    0    0      ] * [ uy ] = [ by ].
//        [ GG   0    -W'*W  ]   [ uz ]   [ bz ]
//
//    H is n x n,  A is p x n, Df is mnl x n, G is N x n where
//    N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ).
//
func kktChol(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	cdim := mnl + dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := mnl + dims.Sum("l", "q") + dims.SumPacked("s")

	QA := A.Transpose()
	tauA := matrix.FloatZeros(p, 1)
	lapack.Geqrf(QA, tauA)

	Gs := matrix.FloatZeros(cdim, n)
	K := matrix.FloatZeros(n, n)
	bzp := matrix.FloatZeros(cdim_pckd, 1)
	yy := matrix.FloatZeros(p, 1)
	checkpnt.AddMatrixVar("tauA", tauA)
	checkpnt.AddMatrixVar("Gs", Gs)
	checkpnt.AddMatrixVar("K", K)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		// Compute
		//
		//     K = [Q1, Q2]' * (H + GG' * W^{-1} * W^{-T} * GG) * [Q1, Q2]
		//
		// and take the Cholesky factorization of the 2,2 block
		//
		//     Q_2' * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2.

		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}
		// Gs = W^{-T} * GG in packed storage.
		if mnl > 0 {
			Gs.SetSubMatrix(0, 0, Df)
		}
		Gs.SetSubMatrix(mnl, 0, G)
		checkpnt.Check("00factor_chol", minor)
		scale(Gs, W, true, true)
		pack2(Gs, dims, mnl)
		//checkpnt.Check("10factor_chol", minor)

		// K = [Q1, Q2]' * (H + Gs' * Gs) * [Q1, Q2].
		blas.SyrkFloat(Gs, K, 1.0, 0.0, la.OptTrans, &la.IOpt{"k", cdim_pckd})
		if H != nil {
			K.SetSubMatrix(0, 0, matrix.Plus(H, K.GetSubMatrix(0, 0, H.Rows(), H.Cols())))
		}
		//checkpnt.Check("20factor_chol", minor)
		symm(K, n, 0)
		lapack.Ormqr(QA, tauA, K, la.OptLeft, la.OptTrans)
		lapack.Ormqr(QA, tauA, K, la.OptRight)
		//checkpnt.Check("30factor_chol", minor)

		// Cholesky factorization of 2,2 block of K.
		lapack.Potrf(K, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)})
		checkpnt.Check("40factor_chol", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ 0          A'  GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0   0          ] * [ uy   ] = [ by        ]
			//     [ W^{-T}*GG  0   -I         ]   [ W*uz ]   [ W^{-T}*bz ]
			//
			// and return ux, uy, W*uz.
			//
			// On entry, x, y, z contain bx, by, bz.  On exit, they contain
			// the solution ux, uy, W*uz.
			//
			// If we change variables ux = Q1*v + Q2*w, the system becomes
			//
			//     [ K11 K12 R ]   [ v  ]   [Q1'*(bx+GG'*W^{-1}*W^{-T}*bz)]
			//     [ K21 K22 0 ] * [ w  ] = [Q2'*(bx+GG'*W^{-1}*W^{-T}*bz)]
			//     [ R^T 0   0 ]   [ uy ]   [by                           ]
			//
			//     W*uz = W^{-T} * ( GG*ux - bz ).
			minor := 0
			if !checkpnt.MinorEmpty() {
				minor = checkpnt.MinorTop()
			}

			// bzp := W^{-T} * bz in packed storage
			scale(z, W, true, true)
			pack(z, bzp, dims, &la.IOpt{"mnl", mnl})

			// x := [Q1, Q2]' * (x + Gs' * bzp)
			//    = [Q1, Q2]' * (bx + Gs' * W^{-T} * bz)
			blas.GemvFloat(Gs, bzp, x, 1.0, 1.0, la.OptTrans, &la.IOpt{"m", cdim_pckd})
			lapack.Ormqr(QA, tauA, x, la.OptLeft, la.OptTrans)

			// y := x[:p]
			//    = Q1' * (bx + Gs' * W^{-T} * bz)
			blas.Copy(y, yy)
			blas.Copy(x, y, &la.IOpt{"n", p})

			// x[:p] := v = R^{-T} * by
			blas.Copy(yy, x)
			lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p})

			// x[p:] := K22^{-1} * (x[p:] - K21*x[:p])
			//        = K22^{-1} * (Q2' * (bx + Gs' * W^{-T} * bz) - K21*v)
			blas.GemvFloat(K, x, x, -1.0, 1.0, &la.IOpt{"m", n - p}, &la.IOpt{"n", p},
				&la.IOpt{"offseta", p}, &la.IOpt{"offsety", p})
			lapack.Potrs(K, x, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)},
				&la.IOpt{"offsetb", p})

			// y := y - [K11, K12] * x
			//    = Q1' * (bx + Gs' * W^{-T} * bz) - K11*v - K12*w
			blas.GemvFloat(K, x, y, -1.0, 1.0, &la.IOpt{"m", p}, &la.IOpt{"n", n})

			// y := R^{-1}*y
			//    = R^{-1} * (Q1' * (bx + Gs' * W^{-T} * bz) - K11*v
			//      - K12*w)
			lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p})

			// x := [Q1, Q2] * x
			lapack.Ormqr(QA, tauA, x, la.OptLeft)

			// bzp := Gs * x - bzp.
			//      = W^{-T} * ( GG*ux - bz ) in packed storage.
			// Unpack and copy to z.
			blas.GemvFloat(Gs, x, bzp, 1.0, -1.0, &la.IOpt{"m", cdim_pckd})
			unpack(bzp, z, dims, &la.IOpt{"mnl", mnl})

			checkpnt.Check("90solve_chol", minor)
			return nil
		}
		return solve, err
	}
	return factor, nil
}
コード例 #16
0
ファイル: mvperf.go プロジェクト: sguzwf/algorithm
func CheckNoTrans(A, X, Y *matrix.FloatMatrix) {
	blas.GemvFloat(A, X, Y, 1.0, 1.0)
}
コード例 #17
0
ファイル: misc.go プロジェクト: sguzwf/algorithm
/*
   Applies Nesterov-Todd scaling or its inverse.

   Computes

        x := W*x        (trans is false 'N', inverse = false 'N')
        x := W^T*x      (trans is true  'T', inverse = false 'N')
        x := W^{-1}*x   (trans is false 'N', inverse = true  'T')
        x := W^{-T}*x   (trans is true  'T', inverse = true  'T').

   x is a dense float matrix.

   W is a MatrixSet with entries:

   - W['dnl']: positive vector
   - W['dnli']: componentwise inverse of W['dnl']
   - W['d']: positive vector
   - W['di']: componentwise inverse of W['d']
   - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms
   - W['beta']: list of positive numbers
   - W['r']: list of square matrices
   - W['rti']: list of square matrices.  rti[k] is the inverse transpose
     of r[k].

   The 'dnl' and 'dnli' entries are optional, and only present when the
   function is called from the nonlinear solver.
*/
func scale(x *matrix.FloatMatrix, W *sets.FloatMatrixSet, trans, inverse bool) (err error) {
	/*DEBUGGED*/
	var wl []*matrix.FloatMatrix
	var w *matrix.FloatMatrix
	ind := 0
	err = nil

	// var minor int = 0
	//if ! checkpnt.MinorEmpty() {
	//	minor = checkpnt.MinorTop()
	//}

	//fmt.Printf("\n%d.%04d scaling x=\n%v\n", checkpnt.Major(), minor, x.ToString("%.17f"))

	// Scaling for nonlinear component xk is xk := dnl .* xk; inverse
	// scaling is xk ./ dnl = dnli .* xk, where dnl = W['dnl'],
	// dnli = W['dnli'].

	if wl = W.At("dnl"); wl != nil {
		if inverse {
			w = W.At("dnli")[0]
		} else {
			w = W.At("dnl")[0]
		}
		for k := 0; k < x.Cols(); k++ {
			err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
				&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k * x.Rows()})
			if err != nil {
				//fmt.Printf("1. TbmvFloat: %v\n", err)
				return
			}
		}
		ind += w.Rows()
	}

	//if ! checkpnt.MinorEmpty() {
	//    checkpnt.Check("000scale", minor)
	//}

	// Scaling for linear 'l' component xk is xk := d .* xk; inverse
	// scaling is xk ./ d = di .* xk, where d = W['d'], di = W['di'].

	if inverse {
		w = W.At("di")[0]
	} else {
		w = W.At("d")[0]
	}

	for k := 0; k < x.Cols(); k++ {
		err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
			&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k*x.Rows() + ind})
		if err != nil {
			//fmt.Printf("2. TbmvFloat: %v\n", err)
			return
		}
	}
	ind += w.Rows()

	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("010scale", minor)
	//}

	// Scaling for 'q' component is
	//
	//    xk := beta * (2*v*v' - J) * xk
	//        = beta * (2*v*(xk'*v)' - J*xk)
	//
	// where beta = W['beta'][k], v = W['v'][k], J = [1, 0; 0, -I].
	//
	//Inverse scaling is
	//
	//    xk := 1/beta * (2*J*v*v'*J - J) * xk
	//        = 1/beta * (-J) * (2*v*((-J*xk)'*v)' + xk).
	//wf := matrix.FloatZeros(x.Cols(), 1)
	w = matrix.FloatZeros(x.Cols(), 1)
	for k, v := range W.At("v") {
		m := v.Rows()
		if inverse {
			blas.ScalFloat(x, -1.0, &la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()})
		}
		err = blas.GemvFloat(x, v, w, 1.0, 0.0, la_.OptTrans, &la_.IOpt{"m", m},
			&la_.IOpt{"n", x.Cols()}, &la_.IOpt{"offsetA", ind},
			&la_.IOpt{"lda", x.Rows()})
		if err != nil {
			//fmt.Printf("3. GemvFloat: %v\n", err)
			return
		}

		err = blas.ScalFloat(x, -1.0, &la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()})
		if err != nil {
			return
		}

		err = blas.GerFloat(v, w, x, 2.0, &la_.IOpt{"m", m},
			&la_.IOpt{"n", x.Cols()}, &la_.IOpt{"lda", x.Rows()},
			&la_.IOpt{"offsetA", ind})
		if err != nil {
			//fmt.Printf("4. GerFloat: %v\n", err)
			return
		}

		var a float64
		if inverse {
			blas.ScalFloat(x, -1.0,
				&la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()})
			// a[i,j] := 1.0/W[i,j]
			a = 1.0 / W.At("beta")[0].GetIndex(k)
		} else {
			a = W.At("beta")[0].GetIndex(k)
		}
		for i := 0; i < x.Cols(); i++ {
			blas.ScalFloat(x, a, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind + i*x.Rows()})
		}
		ind += m
	}

	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("020scale", minor)
	//}

	// Scaling for 's' component xk is
	//
	//     xk := vec( r' * mat(xk) * r )  if trans = 'N'
	//     xk := vec( r * mat(xk) * r' )  if trans = 'T'.
	//
	// r is kth element of W['r'].
	//
	// Inverse scaling is
	//
	//     xk := vec( rti * mat(xk) * rti' )  if trans = 'N'
	//     xk := vec( rti' * mat(xk) * rti )  if trans = 'T'.
	//
	// rti is kth element of W['rti'].
	maxn := 0
	for _, r := range W.At("r") {
		if r.Rows() > maxn {
			maxn = r.Rows()
		}
	}
	a := matrix.FloatZeros(maxn, maxn)
	for k, v := range W.At("r") {
		t := trans
		var r *matrix.FloatMatrix
		if !inverse {
			r = v
			t = !trans
		} else {
			r = W.At("rti")[k]
		}

		n := r.Rows()
		for i := 0; i < x.Cols(); i++ {
			// scale diagonal of xk by 0.5
			blas.ScalFloat(x, 0.5, &la_.IOpt{"offset", ind + i*x.Rows()},
				&la_.IOpt{"inc", n + 1}, &la_.IOpt{"n", n})

			// a = r*tril(x) (t is 'N') or a = tril(x)*r  (t is 'T')
			blas.Copy(r, a)
			if !t {
				err = blas.TrmmFloat(x, a, 1.0, la_.OptRight, &la_.IOpt{"m", n},
					&la_.IOpt{"n", n}, &la_.IOpt{"lda", n}, &la_.IOpt{"ldb", n},
					&la_.IOpt{"offsetA", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("5. TrmmFloat: %v\n", err)
					return
				}

				// x := (r*a' + a*r')  if t is 'N'
				err = blas.Syr2kFloat(r, a, x, 1.0, 0.0, la_.OptNoTrans, &la_.IOpt{"n", n},
					&la_.IOpt{"k", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"ldc", n},
					&la_.IOpt{"offsetC", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("6. Syr2kFloat: %v\n", err)
					return
				}

			} else {
				err = blas.TrmmFloat(x, a, 1.0, la_.OptLeft, &la_.IOpt{"m", n},
					&la_.IOpt{"n", n}, &la_.IOpt{"lda", n}, &la_.IOpt{"ldb", n},
					&la_.IOpt{"offsetA", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("7. TrmmFloat: %v\n", err)
					return
				}

				// x := (r'*a + a'*r)  if t is 'T'
				err = blas.Syr2kFloat(r, a, x, 1.0, 0.0, la_.OptTrans, &la_.IOpt{"n", n},
					&la_.IOpt{"k", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"ldc", n},
					&la_.IOpt{"offsetC", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("8. Syr2kFloat: %v\n", err)
					return
				}
			}
		}
		ind += n * n
	}
	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("030scale", minor)
	//}
	return
}
コード例 #18
0
ファイル: conelp.go プロジェクト: sguzwf/algorithm
func (a *matrixA) Af(x, y *matrix.FloatMatrix, alpha, beta float64, trans la.Option) error {
	return blas.GemvFloat(a.mA, x, y, alpha, beta, trans)
}
コード例 #19
0
ファイル: mvperf.go プロジェクト: sguzwf/algorithm
func CheckTransA(A, X, Y *matrix.FloatMatrix) {
	blas.GemvFloat(A, X, Y, 1.0, 1.0, linalg.OptTrans)
}
コード例 #20
0
ファイル: kkt.go プロジェクト: sguzwf/algorithm
// Solution of KKT equations with zero 1,1 block, by eliminating the
// equality constraints via a QR factorization, and solving the
// reduced KKT system by another QR factorization.
//
// Computes the QR factorization
//
//        A' = [Q1, Q2] * [R1; 0]
//
// and returns a function that (1) computes the QR factorization
//
//        W^{-T} * G * Q2 = Q3 * R3
//
// (with columns of W^{-T}*G in packed storage), and (2) returns a function for solving
//
//        [ 0    A'   G'    ]   [ ux ]   [ bx ]
//        [ A    0    0     ] * [ uy ] = [ by ].
//        [ G    0   -W'*W  ]   [ uz ]   [ bz ]
//
// A is p x n and G is N x n where N = dims['l'] + sum(dims['q']) +
// sum( k**2 for k in dims['s'] ).
//
func kktQr(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")

	QA := A.Transpose()
	tauA := matrix.FloatZeros(p, 1)
	lapack.Geqrf(QA, tauA)

	Gs := matrix.FloatZeros(cdim, n)
	tauG := matrix.FloatZeros(n-p, 1)
	u := matrix.FloatZeros(cdim_pckd, 1)
	vv := matrix.FloatZeros(n, 1)
	w := matrix.FloatZeros(cdim_pckd, 1)
	checkpnt.AddMatrixVar("tauA", tauA)
	checkpnt.AddMatrixVar("tauG", tauG)
	checkpnt.AddMatrixVar("Gs", Gs)
	checkpnt.AddMatrixVar("qr_u", u)
	checkpnt.AddMatrixVar("qr_vv", vv)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}

		// Gs = W^{-T}*G, in packed storage.
		blas.Copy(G, Gs)
		//checkpnt.Check("00factor_qr", minor)
		scale(Gs, W, true, true)
		//checkpnt.Check("01factor_qr", minor)
		pack2(Gs, dims, 0)
		//checkpnt.Check("02factor_qr", minor)

		// Gs := [ Gs1, Gs2 ]
		//     = Gs * [ Q1, Q2 ]
		lapack.Ormqr(QA, tauA, Gs, la.OptRight, &la.IOpt{"m", cdim_pckd})
		//checkpnt.Check("03factor_qr", minor)

		// QR factorization Gs2 := [ Q3, Q4 ] * [ R3; 0 ]
		lapack.Geqrf(Gs, tauG, &la.IOpt{"n", n - p}, &la.IOpt{"m", cdim_pckd},
			&la.IOpt{"offseta", Gs.Rows() * p})
		checkpnt.Check("10factor_qr", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// On entry, x, y, z contain bx, by, bz.  On exit, they
			// contain the solution x, y, W*z of
			//
			//     [ 0         A'  G'*W^{-1} ]   [ x   ]   [bx       ]
			//     [ A         0   0         ] * [ y   ] = [by       ].
			//     [ W^{-T}*G  0   -I        ]   [ W*z ]   [W^{-T}*bz]
			//
			// The system is solved in five steps:
			//
			//       w := W^{-T}*bz - Gs1*R1^{-T}*by
			//       u := R3^{-T}*Q2'*bx + Q3'*w
			//     W*z := Q3*u - w
			//       y := R1^{-1} * (Q1'*bx - Gs1'*(W*z))
			//       x := [ Q1, Q2 ] * [ R1^{-T}*by;  R3^{-1}*u ]

			minor := 0
			if !checkpnt.MinorEmpty() {
				minor = checkpnt.MinorTop()
			}

			// w := W^{-T} * bz in packed storage
			scale(z, W, true, true)
			pack(z, w, dims)
			//checkpnt.Check("00solve_qr", minor)

			// vv := [ Q1'*bx;  R3^{-T}*Q2'*bx ]
			blas.Copy(x, vv)
			lapack.Ormqr(QA, tauA, vv, la.OptTrans)
			lapack.Trtrs(Gs, vv, la.OptUpper, la.OptTrans, &la.IOpt{"n", n - p},
				&la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"offsetb", p})
			//checkpnt.Check("10solve_qr", minor)

			// x[:p] := R1^{-T} * by
			blas.Copy(y, x)
			lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p})
			//checkpnt.Check("20solve_qr", minor)

			// w := w - Gs1 * x[:p]
			//    = W^{-T}*bz - Gs1*by
			blas.GemvFloat(Gs, x, w, -1.0, 1.0, &la.IOpt{"n", p}, &la.IOpt{"m", cdim_pckd})
			//checkpnt.Check("30solve_qr", minor)

			// u := [ Q3'*w + v[p:];  0 ]
			//    = [ Q3'*w + R3^{-T}*Q2'*bx; 0 ]
			blas.Copy(w, u)
			lapack.Ormqr(Gs, tauG, u, la.OptTrans, &la.IOpt{"k", n - p},
				&la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"m", cdim_pckd})
			blas.AxpyFloat(vv, u, 1.0, &la.IOpt{"offsetx", p}, &la.IOpt{"n", n - p})
			blas.ScalFloat(u, 0.0, &la.IOpt{"offset", n - p})
			//checkpnt.Check("40solve_qr", minor)

			// x[p:] := R3^{-1} * u[:n-p]
			blas.Copy(u, x, &la.IOpt{"offsety", p}, &la.IOpt{"n", n - p})
			lapack.Trtrs(Gs, x, la.OptUpper, &la.IOpt{"n", n - p},
				&la.IOpt{"offset", Gs.Rows() * p}, &la.IOpt{"offsetb", p})
			//checkpnt.Check("50solve_qr", minor)

			// x is now [ R1^{-T}*by;  R3^{-1}*u[:n-p] ]
			// x := [Q1 Q2]*x
			lapack.Ormqr(QA, tauA, x)
			//checkpnt.Check("60solve_qr", minor)

			// u := [Q3, Q4] * u - w
			//    = Q3 * u[:n-p] - w
			lapack.Ormqr(Gs, tauG, u, &la.IOpt{"k", n - p}, &la.IOpt{"m", cdim_pckd},
				&la.IOpt{"offseta", Gs.Rows() * p})
			blas.AxpyFloat(w, u, -1.0)
			//checkpnt.Check("70solve_qr", minor)

			// y := R1^{-1} * ( v[:p] - Gs1'*u )
			//    = R1^{-1} * ( Q1'*bx - Gs1'*u )
			blas.Copy(vv, y, &la.IOpt{"n", p})
			blas.GemvFloat(Gs, u, y, -1.0, 1.0, &la.IOpt{"m", cdim_pckd},
				&la.IOpt{"n", p}, la.OptTrans)
			lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p})
			//checkpnt.Check("80solve_qr", minor)

			unpack(u, z, dims)
			checkpnt.Check("90solve_qr", minor)
			return nil
		}
		return solve, err
	}
	return factor, nil
}