コード例 #1
0
ファイル: trank_test.go プロジェクト: sguzwf/algorithm
func syrk2Test(t *testing.T, C, A, B *matrix.FloatMatrix, flags Flags, vlen, nb int) bool {
	//var B0 *matrix.FloatMatrix
	P := A.Cols()
	S := 0
	E := C.Rows()
	C0 := C.Copy()

	trans := linalg.OptNoTrans
	if flags&TRANSA != 0 {
		trans = linalg.OptTrans
		P = A.Rows()
	}
	uplo := linalg.OptUpper
	if flags&LOWER != 0 {
		uplo = linalg.OptLower
	}

	blas.Syr2kFloat(A, B, C0, 1.0, 1.0, uplo, trans)
	if A.Rows() < 8 {
		//t.Logf("..A\n%v\n", A)
		t.Logf("  BLAS C0:\n%v\n", C0)
	}

	Ar := A.FloatArray()
	Br := B.FloatArray()
	Cr := C.FloatArray()
	DSymmRank2Blk(Cr, Ar, Br, 1.0, 1.0, flags, C.LeadingIndex(), A.LeadingIndex(),
		B.LeadingIndex(), P, S, E, vlen, nb)
	result := C0.AllClose(C)
	t.Logf("   C0 == C: %v\n", result)
	if A.Rows() < 8 {
		t.Logf("  DMRank2 C:\n%v\n", C)
	}
	return result
}
コード例 #2
0
ファイル: misc.go プロジェクト: sguzwf/algorithm
/*
   Applies Nesterov-Todd scaling or its inverse.

   Computes

        x := W*x        (trans is false 'N', inverse = false 'N')
        x := W^T*x      (trans is true  'T', inverse = false 'N')
        x := W^{-1}*x   (trans is false 'N', inverse = true  'T')
        x := W^{-T}*x   (trans is true  'T', inverse = true  'T').

   x is a dense float matrix.

   W is a MatrixSet with entries:

   - W['dnl']: positive vector
   - W['dnli']: componentwise inverse of W['dnl']
   - W['d']: positive vector
   - W['di']: componentwise inverse of W['d']
   - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms
   - W['beta']: list of positive numbers
   - W['r']: list of square matrices
   - W['rti']: list of square matrices.  rti[k] is the inverse transpose
     of r[k].

   The 'dnl' and 'dnli' entries are optional, and only present when the
   function is called from the nonlinear solver.
*/
func scale(x *matrix.FloatMatrix, W *sets.FloatMatrixSet, trans, inverse bool) (err error) {
	/*DEBUGGED*/
	var wl []*matrix.FloatMatrix
	var w *matrix.FloatMatrix
	ind := 0
	err = nil

	// var minor int = 0
	//if ! checkpnt.MinorEmpty() {
	//	minor = checkpnt.MinorTop()
	//}

	//fmt.Printf("\n%d.%04d scaling x=\n%v\n", checkpnt.Major(), minor, x.ToString("%.17f"))

	// Scaling for nonlinear component xk is xk := dnl .* xk; inverse
	// scaling is xk ./ dnl = dnli .* xk, where dnl = W['dnl'],
	// dnli = W['dnli'].

	if wl = W.At("dnl"); wl != nil {
		if inverse {
			w = W.At("dnli")[0]
		} else {
			w = W.At("dnl")[0]
		}
		for k := 0; k < x.Cols(); k++ {
			err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
				&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k * x.Rows()})
			if err != nil {
				//fmt.Printf("1. TbmvFloat: %v\n", err)
				return
			}
		}
		ind += w.Rows()
	}

	//if ! checkpnt.MinorEmpty() {
	//    checkpnt.Check("000scale", minor)
	//}

	// Scaling for linear 'l' component xk is xk := d .* xk; inverse
	// scaling is xk ./ d = di .* xk, where d = W['d'], di = W['di'].

	if inverse {
		w = W.At("di")[0]
	} else {
		w = W.At("d")[0]
	}

	for k := 0; k < x.Cols(); k++ {
		err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
			&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k*x.Rows() + ind})
		if err != nil {
			//fmt.Printf("2. TbmvFloat: %v\n", err)
			return
		}
	}
	ind += w.Rows()

	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("010scale", minor)
	//}

	// Scaling for 'q' component is
	//
	//    xk := beta * (2*v*v' - J) * xk
	//        = beta * (2*v*(xk'*v)' - J*xk)
	//
	// where beta = W['beta'][k], v = W['v'][k], J = [1, 0; 0, -I].
	//
	//Inverse scaling is
	//
	//    xk := 1/beta * (2*J*v*v'*J - J) * xk
	//        = 1/beta * (-J) * (2*v*((-J*xk)'*v)' + xk).
	//wf := matrix.FloatZeros(x.Cols(), 1)
	w = matrix.FloatZeros(x.Cols(), 1)
	for k, v := range W.At("v") {
		m := v.Rows()
		if inverse {
			blas.ScalFloat(x, -1.0, &la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()})
		}
		err = blas.GemvFloat(x, v, w, 1.0, 0.0, la_.OptTrans, &la_.IOpt{"m", m},
			&la_.IOpt{"n", x.Cols()}, &la_.IOpt{"offsetA", ind},
			&la_.IOpt{"lda", x.Rows()})
		if err != nil {
			//fmt.Printf("3. GemvFloat: %v\n", err)
			return
		}

		err = blas.ScalFloat(x, -1.0, &la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()})
		if err != nil {
			return
		}

		err = blas.GerFloat(v, w, x, 2.0, &la_.IOpt{"m", m},
			&la_.IOpt{"n", x.Cols()}, &la_.IOpt{"lda", x.Rows()},
			&la_.IOpt{"offsetA", ind})
		if err != nil {
			//fmt.Printf("4. GerFloat: %v\n", err)
			return
		}

		var a float64
		if inverse {
			blas.ScalFloat(x, -1.0,
				&la_.IOpt{"offset", ind}, &la_.IOpt{"inc", x.Rows()})
			// a[i,j] := 1.0/W[i,j]
			a = 1.0 / W.At("beta")[0].GetIndex(k)
		} else {
			a = W.At("beta")[0].GetIndex(k)
		}
		for i := 0; i < x.Cols(); i++ {
			blas.ScalFloat(x, a, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind + i*x.Rows()})
		}
		ind += m
	}

	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("020scale", minor)
	//}

	// Scaling for 's' component xk is
	//
	//     xk := vec( r' * mat(xk) * r )  if trans = 'N'
	//     xk := vec( r * mat(xk) * r' )  if trans = 'T'.
	//
	// r is kth element of W['r'].
	//
	// Inverse scaling is
	//
	//     xk := vec( rti * mat(xk) * rti' )  if trans = 'N'
	//     xk := vec( rti' * mat(xk) * rti )  if trans = 'T'.
	//
	// rti is kth element of W['rti'].
	maxn := 0
	for _, r := range W.At("r") {
		if r.Rows() > maxn {
			maxn = r.Rows()
		}
	}
	a := matrix.FloatZeros(maxn, maxn)
	for k, v := range W.At("r") {
		t := trans
		var r *matrix.FloatMatrix
		if !inverse {
			r = v
			t = !trans
		} else {
			r = W.At("rti")[k]
		}

		n := r.Rows()
		for i := 0; i < x.Cols(); i++ {
			// scale diagonal of xk by 0.5
			blas.ScalFloat(x, 0.5, &la_.IOpt{"offset", ind + i*x.Rows()},
				&la_.IOpt{"inc", n + 1}, &la_.IOpt{"n", n})

			// a = r*tril(x) (t is 'N') or a = tril(x)*r  (t is 'T')
			blas.Copy(r, a)
			if !t {
				err = blas.TrmmFloat(x, a, 1.0, la_.OptRight, &la_.IOpt{"m", n},
					&la_.IOpt{"n", n}, &la_.IOpt{"lda", n}, &la_.IOpt{"ldb", n},
					&la_.IOpt{"offsetA", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("5. TrmmFloat: %v\n", err)
					return
				}

				// x := (r*a' + a*r')  if t is 'N'
				err = blas.Syr2kFloat(r, a, x, 1.0, 0.0, la_.OptNoTrans, &la_.IOpt{"n", n},
					&la_.IOpt{"k", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"ldc", n},
					&la_.IOpt{"offsetC", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("6. Syr2kFloat: %v\n", err)
					return
				}

			} else {
				err = blas.TrmmFloat(x, a, 1.0, la_.OptLeft, &la_.IOpt{"m", n},
					&la_.IOpt{"n", n}, &la_.IOpt{"lda", n}, &la_.IOpt{"ldb", n},
					&la_.IOpt{"offsetA", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("7. TrmmFloat: %v\n", err)
					return
				}

				// x := (r'*a + a'*r)  if t is 'T'
				err = blas.Syr2kFloat(r, a, x, 1.0, 0.0, la_.OptTrans, &la_.IOpt{"n", n},
					&la_.IOpt{"k", n}, &la_.IOpt{"ldb", n}, &la_.IOpt{"ldc", n},
					&la_.IOpt{"offsetC", ind + i*x.Rows()})
				if err != nil {
					//fmt.Printf("8. Syr2kFloat: %v\n", err)
					return
				}
			}
		}
		ind += n * n
	}
	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("030scale", minor)
	//}
	return
}
コード例 #3
0
ファイル: mcsdp_test.go プロジェクト: sguzwf/algorithm
func mcsdp(w *matrix.FloatMatrix) (*Solution, error) {
	//
	// Returns solution x, z to
	//
	//    (primal)  minimize    sum(x)
	//              subject to  w + diag(x) >= 0
	//
	//    (dual)    maximize    -tr(w*z)
	//              subject to  diag(z) = 1
	//                          z >= 0.
	//
	n := w.Rows()
	G := &matrixFs{n}

	cngrnc := func(r, x *matrix.FloatMatrix, alpha float64) (err error) {
		// Congruence transformation
		//
		//    x := alpha * r'*x*r.
		//
		// r and x are square matrices.
		//
		err = nil

		// tx = matrix(x, (n,n)) is copying and reshaping
		// scale diagonal of x by 1/2, (x is (n,n))
		tx := x.Copy()
		matrix.Reshape(tx, n, n)
		tx.Diag().Scale(0.5)

		// a := tril(x)*r
		// (python: a = +r is really making a copy of r)
		a := r.Copy()

		err = blas.TrmmFloat(tx, a, 1.0, linalg.OptLeft)

		// x := alpha*(a*r' + r*a')
		err = blas.Syr2kFloat(r, a, tx, alpha, 0.0, linalg.OptTrans)

		// x[:] = tx[:]
		tx.CopyTo(x)
		return
	}

	Fkkt := func(W *sets.FloatMatrixSet) (KKTFunc, error) {

		//    Solve
		//                  -diag(z)                           = bx
		//        -diag(x) - inv(rti*rti') * z * inv(rti*rti') = bs
		//
		//    On entry, x and z contain bx and bs.
		//    On exit, they contain the solution, with z scaled
		//    (inv(rti)'*z*inv(rti) is returned instead of z).
		//
		//    We first solve
		//
		//        ((rti*rti') .* (rti*rti')) * x = bx - diag(t*bs*t)
		//
		//    and take z  = -rti' * (diag(x) + bs) * rti.

		var err error = nil
		rti := W.At("rti")[0]

		// t = rti*rti' as a nonsymmetric matrix.
		t := matrix.FloatZeros(n, n)
		err = blas.GemmFloat(rti, rti, t, 1.0, 0.0, linalg.OptTransB)
		if err != nil {
			return nil, err
		}

		// Cholesky factorization of tsq = t.*t.
		tsq := matrix.Mul(t, t)
		err = lapack.Potrf(tsq)
		if err != nil {
			return nil, err
		}

		f := func(x, y, z *matrix.FloatMatrix) (err error) {
			// tbst := t * zs * t = t * bs * t
			tbst := z.Copy()
			matrix.Reshape(tbst, n, n)
			cngrnc(t, tbst, 1.0)

			// x := x - diag(tbst) = bx - diag(rti*rti' * bs * rti*rti')
			diag := tbst.Diag().Transpose()
			x.Minus(diag)

			// x := (t.*t)^{-1} * x = (t.*t)^{-1} * (bx - diag(t*bs*t))
			err = lapack.Potrs(tsq, x)

			// z := z + diag(x) = bs + diag(x)
			// z, x are really column vectors here
			z.AddIndexes(matrix.MakeIndexSet(0, n*n, n+1), x.FloatArray())

			// z := -rti' * z * rti = -rti' * (diag(x) + bs) * rti
			cngrnc(rti, z, -1.0)
			return nil
		}
		return f, nil
	}

	c := matrix.FloatWithValue(n, 1, 1.0)

	// initial feasible x: x = 1.0 - min(lmbda(w))
	lmbda := matrix.FloatZeros(n, 1)
	wp := w.Copy()
	lapack.Syevx(wp, lmbda, nil, 0.0, nil, []int{1, 1}, linalg.OptRangeInt)
	x0 := matrix.FloatZeros(n, 1).Add(-lmbda.GetAt(0, 0) + 1.0)
	s0 := w.Copy()
	s0.Diag().Plus(x0.Transpose())
	matrix.Reshape(s0, n*n, 1)

	// initial feasible z is identity
	z0 := matrix.FloatIdentity(n)
	matrix.Reshape(z0, n*n, 1)

	dims := sets.DSetNew("l", "q", "s")
	dims.Set("s", []int{n})

	primalstart := sets.FloatSetNew("x", "s")
	dualstart := sets.FloatSetNew("z")
	primalstart.Set("x", x0)
	primalstart.Set("s", s0)
	dualstart.Set("z", z0)

	var solopts SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = false
	h := w.Copy()
	matrix.Reshape(h, h.NumElements(), 1)
	return ConeLpCustomMatrix(c, G, h, nil, nil, dims, Fkkt, &solopts, primalstart, dualstart)
}
コード例 #4
0
ファイル: misc.go プロジェクト: sguzwf/algorithm
// The product x := (y o x).  If diag is 'D', the 's' part of y is
// diagonal and only the diagonal is stored.
func sprod(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, opts ...la_.Option) (err error) {

	err = nil
	diag := la_.GetStringOpt("diag", "N", opts...)
	// For the nonlinear and 'l' blocks:
	//
	//     yk o xk = yk .* xk.
	ind := mnl + dims.At("l")[0]
	err = blas.Tbmv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
	if err != nil {
		return
	}
	//fmt.Printf("Sprod l:x=\n%v\n", x)

	// For 'q' blocks:
	//
	//               [ l0   l1'  ]
	//     yk o xk = [           ] * xk
	//               [ l1   l0*I ]
	//
	// where yk = (l0, l1).
	for _, m := range dims.At("q") {
		dd := blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind},
			&la_.IOpt{"n", m})
		//fmt.Printf("dd=%v\n", dd)
		alpha := y.GetIndex(ind)
		//fmt.Printf("scal=%v\n", alpha)
		blas.ScalFloat(x, alpha, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1})
		alpha = x.GetIndex(ind)
		//fmt.Printf("axpy=%v\n", alpha)
		blas.AxpyFloat(y, x, alpha, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1},
			&la_.IOpt{"n", m - 1})
		x.SetIndex(ind, dd)
		ind += m
	}
	//fmt.Printf("Sprod q :x=\n%v\n", x)

	// For the 's' blocks:
	//
	//    yk o sk = .5 * ( Yk * mat(xk) + mat(xk) * Yk )
	//
	// where Yk = mat(yk) if diag is 'N' and Yk = diag(yk) if diag is 'D'.

	if diag[0] == 'N' {
		// DEBUGGED
		maxm := maxdim(dims.At("s"))
		A := matrix.FloatZeros(maxm, maxm)
		for _, m := range dims.At("s") {
			blas.Copy(x, A, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m * m})
			for i := 0; i < m-1; i++ { // i < m-1 --> i < m
				symm(A, m, 0)
				symm(y, m, ind)
			}
			err = blas.Syr2kFloat(A, y, x, 0.5, 0.0, &la_.IOpt{"n", m}, &la_.IOpt{"k", m},
				&la_.IOpt{"lda", m}, &la_.IOpt{"ldb", m}, &la_.IOpt{"ldc", m},
				&la_.IOpt{"offsetb", ind}, &la_.IOpt{"offsetc", ind})
			if err != nil {
				return
			}
			ind += m * m
		}
		//fmt.Printf("Sprod diag=N s:x=\n%v\n", x)

	} else {
		ind2 := ind
		for _, m := range dims.At("s") {
			for i := 0; i < m; i++ {
				// original: u = 0.5 * ( y[ind2+i:ind2+m] + y[ind2+i] )
				// creates matrix of elements: [ind2+i ... ind2+m] then
				// element wisely adds y[ind2+i] and scales by 0.5
				iset := matrix.MakeIndexSet(ind2+i, ind2+m, 1)
				u := matrix.FloatVector(y.GetIndexes(iset...))
				u.Add(y.GetIndex(ind2 + i))
				u.Scale(0.5)
				err = blas.Tbmv(u, x, &la_.IOpt{"n", m - i}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1},
					&la_.IOpt{"offsetx", ind + i*(m+1)})
				if err != nil {
					return
				}
			}
			ind += m * m
			ind2 += m
		}
		//fmt.Printf("Sprod diag=T s:x=\n%v\n", x)
	}
	return
}