func checkConeLpDimensions(dims *sets.DimensionSet) error { if len(dims.At("l")) == 0 { dims.Set("l", []int{0}) } else if dims.At("l")[0] < 0 { return errors.New("dimension 'l' must be nonnegative integer") } for _, m := range dims.At("q") { if m < 1 { return errors.New("dimension 'q' must be list of positive integers") } } for _, m := range dims.At("s") { if m < 1 { return errors.New("dimension 's' must be list of positive integers") } } return nil }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // f is vector valued, convex and twice differentiable. The linear // inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. The // next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{h.Rows()}, q: []int{}, s: []int{}. // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] primal solution // Result.At("snl")[0] non-linear constraint slacks // Result.At("sl")[0] linear constraint slacks // Result.At("y")[0] values for linear equality constraints y // Result.At("znl")[0] values of dual variables for nonlinear inequalities // Result.At("zl")[0] values of dual variables for linear inequalities // // If err is non-nil then sol is nil and err contains information about the argument or // computation error. // func Cpl(F ConvexProg, c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } var mc = matrixVar{c} var mb = matrixVar{b} var mA = matrixVarA{A} var mG = matrixVarG{G, dims} solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "chol" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTCpSolver = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, mnl) // solver is kktsolver = func(W *sets.FloatMatrixSet, x, z *matrix.FloatMatrix) (KKTFunc, error) { _, Df, H, err := F.F2(x, z) if err != nil { return nil, err } return factor(W, H, Df) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } //return CplCustom(F, c, &mG, h, &mA, b, dims, kktsolver, solopts) return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // using custom KTT equation solver and custom constraints G and A. // func CplCustomMatrix(F ConvexProg, c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } mc := matrixVar{c} mb := matrixVar{b} var mG MatrixVarG var mA MatrixVarA if G == nil { mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims} } else { mG = &matrixIfG{G} } if A == nil { mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())} } else { mA = &matrixIfA{A} } return cpl_problem(F, &mc, mG, h, mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // using custom KTT equation solver. // func CplCustomKKT(F ConvexProg, c *matrix.FloatMatrix, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } var mc = matrixVar{c} var mb = matrixVar{b} var mA = matrixVarA{A} var mG = matrixVarG{G, dims} return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a pair of primal and dual cone programs using custom KKT solver. // func ConeLpCustomKKT(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mc := &matrixVar{c} mb := &matrixVar{b} return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart) }
// Solves a pair of primal and dual cone programs // // minimize c'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -h'*z - b'*y // subject to G'*z + A'*y + c = 0 // z >= 0. // // The inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. // The next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}. // // Arguments primalstart, dualstart are optional starting points for primal and // dual problems. If non-nil then primalstart is a FloatMatrixSet having two entries. // // primalstart.At("x")[0] starting point for x // primalstart.At("s")[0] starting point for s // dualstart.At("y")[0] starting point for y // dualstart.At("z")[0] starting point for z // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] solution for x // Result.At("y")[0] solution for y // Result.At("s")[0] solution for s // Result.At("z")[0] solution for z // func ConeLp(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if c.Rows() < 1 { err = errors.New("No variables, 'c' must have at least one row") return } if h == nil || h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "qr" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTConeSolver = nil if kktfunc, ok := lpsolvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, 0) if err != nil { return nil, err } kktsolver = func(W *sets.FloatMatrixSet) (KKTFunc, error) { return factor(W, nil, nil) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } //return ConeLpCustom(c, &mG, h, &mA, b, dims, kktsolver, solopts, primalstart, dualstart) c_e := &matrixVar{c} G_e := &matrixVarG{G, dims} A_e := &matrixVarA{A} b_e := &matrixVar{b} return conelp_problem(c_e, G_e, h, A_e, b_e, dims, kktsolver, solopts, primalstart, dualstart) }