func GesvdFloat(A, S, U, Vt *matrix.FloatMatrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) err = checkGesvd(ind, pars, A, S, U, Vt) if err != nil { return err } if ind.M == 0 || ind.N == 0 { return nil } Aa := A.FloatArray() Sa := S.FloatArray() var Ua, Va []float64 Ua = nil Va = nil if U != nil { Ua = U.FloatArray()[ind.OffsetU:] } if Vt != nil { Va = Vt.FloatArray()[ind.OffsetVt:] } info := dgesvd(linalg.ParamString(pars.Jobu), linalg.ParamString(pars.Jobvt), ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, Sa[ind.OffsetS:], Ua, ind.LDu, Va, ind.LDvt) if info != 0 { return errors.New("GesvdFloat not implemented yet") } return nil }
// Copies a vector X to a vector Y (Y := X). // // ARGUMENTS // X float or complex matrix // Y float or complex matrix. Must have the same type as X. // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is given by 1+(len(x)-offsetx-1)/incx or 0 // if len(x) > offsetx+1 // incx nonzero integer // incy nonzero integer // offsetx nonnegative integer // offsety nonnegative integer; // func Copy(X, Y matrix.Matrix, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fcopy, X, Y) if err != nil { return } if ind.Nx == 0 { return } sameType := matrix.EqualTypes(X, Y) if ! sameType { err = errors.New("arrays not same type") return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() zcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() dcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) default: err = errors.New("not implemented for parameter types", ) } return }
// Scales a vector by a constant (X := alpha*X). // // ARGUMENTS // X float or complex matrix // alpha number (float or complex singleton matrix). Complex alpha is only // allowed if X is complex. // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is equal to 1+(len(x)-offset-1)/inc or 0 // if len(x) > offset+1. // inc positive integer, default = 1 // offset nonnegative integer, default = 0 // func Scal(X matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fscal, X, nil) if err != nil { return } if ind.Nx == 0 { return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() cval := alpha.Complex() zscal(ind.Nx, cval, Xa[ind.OffsetX:], ind.IncX) case *matrix.FloatMatrix: Xa := X.FloatArray() rval := alpha.Float() if math.IsNaN(rval) { return errors.New("alpha not float value") } dscal(ind.Nx, rval, Xa[ind.OffsetX:], ind.IncX) default: err = errors.New("not implemented for parameter types", ) } return }
/* Inverse of a real or complex matrix. Getri(A, ipiv, n=A.Rows, ldA = max(1,A.Rows), offsetA=0) PURPOSE Computes the inverse of real or complex matrix of order n. On entry, A and ipiv contain the LU factorization, as returned by gesv() or getrf(). On exit A is replaced by the inverse. ARGUMENTS A float or complex matrix ipiv int vector OPTIONS n nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. offsetA nonnegative integer; */ func Getri(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Cols() } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.OffsetA < 0 { return errors.New("lda") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ipiv != nil && len(ipiv) < ind.N { return errors.New("size ipiv") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() info = dgetri(ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv) case *matrix.ComplexMatrix: } if info != 0 { return errors.New("Getri call error") } return nil }
// Returns Y = X^H*Y for real or complex X, Y. // // ARGUMENTS // X float or complex matrix // Y float or complex matrix. Must have the same type as X. // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is equal to nx = 1+(len(x)-offsetx-1)/incx or 0 if // len(x) > offsetx+1. If the default value is used, it must be equal to // ny = 1+(len(y)-offsetx-1)/|incy| or 0 if len(y) > offsety+1 // incx nonzero integer [default=1] // incy nonzero integer [default=1] // offsetx nonnegative integer [default=0] // offsety nonnegative integer [default=0] // func Dot(X, Y matrix.Matrix, opts ...linalg.Option) (v matrix.Scalar) { v = matrix.FScalar(math.NaN()) //cv = cmplx.NaN() ind := linalg.GetIndexOpts(opts...) err := check_level1_func(ind, fdot, X, Y) if err != nil { return } if ind.Nx == 0 { return matrix.FScalar(0.0) } sameType := matrix.EqualTypes(X, Y) if ! sameType { err = errors.New("arrays not of same type") return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() v = matrix.CScalar(zdotc(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)) case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() v = matrix.FScalar(ddot(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)) //default: // err = errors.New("not implemented for parameter types", ) } return }
/* Solution of a triangular and banded set of equations. Tbsv(A, X, uplo=PLower, trans=PNoTrans, diag=PNonDiag, n=A.Cols, k=max(0,A.Rows-1), ldA=A.size[0], incx=1, offsetA=0, offsetx=0) PURPOSE X := A^{-1}*X, if trans is PNoTrans X := A^{-T}*X, if trans is PTrans X := A^{-H}*X, if trans is PConjTrans A is banded triangular of order n and with bandwidth k. ARGUMENTS A float or complex m*k matrix. X float or complex k*1 matrix. Must have the same type as A. OPTIONS uplo PLower or PUpper trans PNoTrans, PTrans or PConjTrans diag PNoNUnit or PUnit n nonnegative integer. If negative, the default value is used. k nonnegative integer. If negative, the default value is used. ldA nonnegative integer. ldA >= 1+k. If zero the default value is used. incx nonzero integer offsetA nonnegative integer offsetx nonnegative integer; */ func Tbsv(A, X matrix.Matrix, opts ...linalg.Option) (err error) { var params *linalg.Parameters if !matrix.EqualTypes(A, X) { err = errors.New("Parameters not of same type") return } params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, ftbsv, X, nil, A, params) if err != nil { return } if ind.N == 0 { return } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Aa := A.FloatArray() uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) diag := linalg.ParamString(params.Diag) dtbsv(uplo, trans, diag, ind.N, ind.K, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX) case *matrix.ComplexMatrix: return errors.New("Not implemented yet for complx.Matrix") default: return errors.New("Unknown type, not implemented") } return }
// See function Gbmv. func GbmvFloat(A, X, Y *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fgbmv, X, Y, A, params) if err != nil { return } if ind.M == 0 && ind.N == 0 { return } Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() if params.Trans == linalg.PNoTrans && ind.N == 0 { dscal(ind.M, beta, Ya[ind.OffsetY:], ind.IncY) } else if params.Trans == linalg.PTrans && ind.M == 0 { dscal(ind.N, beta, Ya[ind.OffsetY:], ind.IncY) } else { trans := linalg.ParamString(params.Trans) dgbmv(trans, ind.M, ind.N, ind.Kl, ind.Ku, alpha, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, beta, Ya[ind.OffsetY:], ind.IncY) } return }
// See function Symm. func SymmFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fsymm, A, B, C, params) if err != nil { return } if ind.M == 0 || ind.N == 0 { return } Aa := A.FloatArray() Ba := B.FloatArray() Ca := C.FloatArray() uplo := linalg.ParamString(params.Uplo) side := linalg.ParamString(params.Side) dsymm(side, uplo, ind.M, ind.N, alpha, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, beta, Ca[ind.OffsetC:], ind.LDc) return }
// See function Gemm. func GemmFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fgemm, A, B, C, params) if err != nil { return } if ind.M == 0 || ind.N == 0 { return } Aa := A.FloatArray() Ba := B.FloatArray() Ca := C.FloatArray() transB := linalg.ParamString(params.TransB) transA := linalg.ParamString(params.TransA) //diag := linalg.ParamString(params.Diag) dgemm(transA, transB, ind.M, ind.N, ind.K, alpha, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, beta, Ca[ind.OffsetC:], ind.LDc) return }
func GbtrsFloat(A, B *matrix.FloatMatrix, ipiv []int32, KL int, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) ind.Kl = KL err = checkGbtrs(ind, A, B, ipiv) if err != nil { return err } if ind.N == 0 || ind.Nrhs == 0 { return nil } Aa := A.FloatArray() Ba := B.FloatArray() trans := linalg.ParamString(pars.Trans) info := dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb) if info != 0 { return errors.New(fmt.Sprintf("Gbtrs: call error: %d", info)) } return nil }
/* Symmetric rank-2 update. syr2(x, y, A, uplo='L', alpha=1.0, n=A.size[0], incx=1, incy=1, ldA=max(1,A.size[0]), offsetx=0, offsety=0, offsetA=0) PURPOSE Computes A := A + alpha*(x*y^T + y*x^T) with A real symmetric matrix of order n. ARGUMENTS x float matrix y float matrix A float matrix alpha real number (int or float) OPTIONS uplo 'L' or 'U' n integer. If negative, the default value is used. incx nonzero integer incy nonzero integer ldA nonnegative integer. ldA >= max(1,n). If zero the default value is used. offsetx nonnegative integer offsety nonnegative integer offsetA nonnegative integer; */ func Syr2(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fsyr2, X, Y, A, params) if err != nil { return } if !matrix.EqualTypes(A, X, Y) { return errors.New("Parameters not of same type") } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := X.FloatArray() Aa := A.FloatArray() aval := alpha.Float() if math.IsNaN(aval) { return errors.New("alpha not a number") } uplo := linalg.ParamString(params.Uplo) dsyr2(uplo, ind.N, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa) case *matrix.ComplexMatrix: return errors.New("Not implemented yet for complx.Matrix") default: return errors.New("Unknown type, not implemented") } return }
// See function Syrk2. func Syr2kFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fsyr2k, A, B, C, params) if err != nil { return } if ind.N == 0 { return } Aa := A.FloatArray() Ba := B.FloatArray() Ca := C.FloatArray() uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) //diag := linalg.ParamString(params.Diag) dsyr2k(uplo, trans, ind.N, ind.K, alpha, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, beta, Ca[ind.OffsetC:], ind.LDc) return }
// See function Trsm. func TrsmFloat(A, B *matrix.FloatMatrix, alpha float64, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, ftrsm, A, B, nil, params) if err != nil { return } if ind.N == 0 || ind.M == 0 { return } Aa := A.FloatArray() Ba := B.FloatArray() uplo := linalg.ParamString(params.Uplo) transA := linalg.ParamString(params.TransA) side := linalg.ParamString(params.Side) diag := linalg.ParamString(params.Diag) dtrsm(side, uplo, transA, diag, ind.M, ind.N, alpha, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) return }
/* Solves a real symmetric or complex Hermitian positive definite set of linear equations, given the Cholesky factorization computed by potrf() or posv(). Potrs(A, B, uplo=PLower, n=A.Rows, nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) PURPOSE Solves A*X = B where A is n by n, real symmetric or complex Hermitian and positive definite, and B is n by nrhs. On entry, A contains the Cholesky factor, as returned by Posv() or Potrf(). On exit B is replaced by the solution X. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. OPTIONS uplo PLower or PUpper n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB positive integer. ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Potrs(A, B matrix.Matrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("lda") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return errors.New("ldb") } if ind.OffsetA < 0 { return errors.New("offsetA") } if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ind.OffsetB < 0 { return errors.New("offsetB") } if B.NumElements() < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } if !matrix.EqualTypes(A, B) { return errors.New("types") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() uplo := linalg.ParamString(pars.Uplo) info = dpotrs(uplo, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return errors.New("ComplexMatrx: not implemented yet") } if info != 0 { return errors.New("Potrs failed") } return nil }
/* General matrix-matrix product. (L3) PURPOSE Computes C := alpha*A*B + beta*C if transA = PNoTrans and transB = PNoTrans. C := alpha*A^T*B + beta*C if transA = PTrans and transB = PNoTrans. C := alpha*A^H*B + beta*C if transA = PConjTrans and transB = PNoTrans. C := alpha*A*B^T + beta*C if transA = PNoTrans and transB = PTrans. C := alpha*A^T*B^T + beta*C if transA = PTrans and transB = PTrans. C := alpha*A^H*B^T + beta*C if transA = PConjTrans and transB = PTrans. C := alpha*A*B^H + beta*C if transA = PNoTrans and transB = PConjTrans. C := alpha*A^T*B^H + beta*C if transA = PTrans and transB = PConjTrans. C := alpha*A^H*B^H + beta*C if transA = PConjTrans and transB = PConjTrans. The number of rows of the matrix product is m. The number of columns is n. The inner dimension is k. If k=0, this reduces to C := beta*C. ARGUMENTS A float or complex matrix, m*k B float or complex matrix, k*n C float or complex matrix, m*n alpha number (float or complex singleton matrix) beta number (float or complex singleton matrix) OPTIONS transA PNoTrans, PTrans or PConjTrans transB PNoTrans, PTrans or PConjTrans m integer. If negative, the default value is used. The default value is m = A.Rows of if transA != PNoTrans m = A.Cols. n integer. If negative, the default value is used. The default value is n = (transB == PNoTrans) ? B.Cols : B.Rows. k integer. If negative, the default value is used. The default value is k=A.Cols or if transA != PNoTrans) k = A.Rows, transA=PNoTrans. If the default value is used it should also be equal to (transB == PNoTrans) ? B.Rows : B.Cols. ldA nonnegative integer. ldA >= max(1,m) of if transA != NoTrans max(1,k). If zero, the default value is used. ldB nonnegative integer. ldB >= max(1,k) or if transB != NoTrans max(1,n). If zero, the default value is used. ldC nonnegative integer. ldC >= max(1,m). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer offsetC nonnegative integer; */ func Gemm(A, B, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fgemm, A, B, C, params) if err != nil { return } if ind.M == 0 || ind.N == 0 { return } if !matrix.EqualTypes(A, B, C) { return errors.New("Parameters not of same type") } switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() Ca := C.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } transB := linalg.ParamString(params.TransB) transA := linalg.ParamString(params.TransA) dgemm(transA, transB, ind.M, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval, Ca[ind.OffsetC:], ind.LDc) case *matrix.ComplexMatrix: Aa := A.ComplexArray() Ba := B.ComplexArray() Ca := C.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a number") } bval := beta.Complex() if cmplx.IsNaN(bval) { return errors.New("beta not a number") } transB := linalg.ParamString(params.TransB) transA := linalg.ParamString(params.TransA) zgemm(transA, transB, ind.M, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval, Ca[ind.OffsetC:], ind.LDc) default: return errors.New("Unknown type, not implemented") } return }
func GbsvComplex(A, B *matrix.ComplexMatrix, ipiv []int32, kl int, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) ind.Kl = kl err := checkGbsv(ind, A, B, ipiv) if err != nil { return err } if ind.N == 0 || ind.Nrhs == 0 { return nil } return errors.New("GbsvComplex not implemented yet") }
// See function Scal. func ScalFloat(X *matrix.FloatMatrix, alpha float64, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fscal, X, nil) if err != nil { return } if ind.Nx == 0 { return } Xa := X.FloatArray() dscal(ind.Nx, alpha, Xa[ind.OffsetX:], ind.IncX) return }
/* LU factorization of a real or complex tridiagonal matrix. Gttrf(dl, d, du, du2, ipiv, n=len(d)-offsetd, offsetdl=0, offsetd=0, offsetdu=0) PURPOSE Factors an n by n real or complex tridiagonal matrix A as A = P*L*U. A is specified by its lower diagonal dl, diagonal d, and upper diagonal du. On exit dl, d, du, du2 and ipiv contain the details of the factorization. ARGUMENTS. DL float or complex matrix D float or complex matrix. Must have the same type as DL. DU float or complex matrix. Must have the same type as DL. DU2 float or complex matrix of length at least n-2. Must have the same type as DL. ipiv int vector of length at least n OPTIONS n nonnegative integer. If negative, the default value is used. offsetdl nonnegative integer offsetd nonnegative integer offsetdu nonnegative integer */ func Gtrrf(DL, D, DU, DU2 matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.OffsetD < 0 { return errors.New("offset D") } if ind.N < 0 { ind.N = D.NumElements() - ind.OffsetD } if ind.N < 0 { return errors.New("size D") } if ind.N == 0 { return nil } if ind.OffsetDL < 0 { return errors.New("offset DL") } sizeDL := DL.NumElements() if sizeDL < ind.OffsetDL+ind.N-1 { return errors.New("sizeDL") } if ind.OffsetDU < 0 { return errors.New("offset DU") } sizeDU := DU.NumElements() if sizeDU < ind.OffsetDU+ind.N-1 { return errors.New("sizeDU") } sizeDU2 := DU2.NumElements() if sizeDU2 < ind.N-2 { return errors.New("sizeDU2") } if len(ipiv) < ind.N { return errors.New("size ipiv") } info := -1 switch DL.(type) { case *matrix.FloatMatrix: DLa := DL.FloatArray() Da := D.FloatArray() DUa := DU.FloatArray() DU2a := DU2.FloatArray() info = dgttrf(ind.N, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a, ipiv) case *matrix.ComplexMatrix: } if info != 0 { return errors.New("Gttrf call error") } return nil }
// See function Asum. func AsumComplex(X *matrix.ComplexMatrix, opts ...linalg.Option) (v float64, err error) { v = 0.0 ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fasum, X, nil) if err != nil { return } if ind.Nx == 0 { return } Xa := X.ComplexArray() v = dzasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX) return }
// See function Copy. func CopyFloat(X, Y *matrix.FloatMatrix, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fcopy, X, Y) if err != nil { return } if ind.Nx == 0 { return } Xa := X.FloatArray() Ya := Y.FloatArray() dcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) return }
/* Rank-k update of symmetric matrix. (L3) Herk(A, C, alpha, beta, uplo=PLower, trans=PNoTrans, n=-1, k=-1, ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetB=0) Computes C := alpha*A*A^T + beta*C, if trans is PNoTrans C := alpha*A^T*A + beta*C, if trans is PTrans C is symmetric (real or complex) of order n. The inner dimension of the matrix product is k. If k=0 this is interpreted as C := beta*C. ARGUMENTS A float or complex matrix. C float or complex matrix. Must have the same type as A. alpha number (float or complex singleton matrix). Complex alpha is only allowed if A is complex. beta number (float or complex singleton matrix). Complex beta is only allowed if A is complex. OPTIONS uplo PLower or PUpper trans PNoTrans or PTrans n integer. If negative, the default value is used. The default value is n = A.Rows or if trans == PNoTrans n = A.Cols. k integer. If negative, the default value is used. The default value is k = A.Cols, or if trans == PNoTrans k = A.Rows. ldA nonnegative integer. ldA >= max(1,n) or if trans != PNoTrans ldA >= max(1,k). If zero, the default value is used. ldC nonnegative integer. ldC >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetC nonnegative integer; */ func Herk(A, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fsyrk, A, nil, C, params) if e != nil || err != nil { return } if !matrix.EqualTypes(A, C) { return errors.New("Parameters not of same type") } switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ca := C.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) dsyrk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval, Ca[ind.OffsetC:], ind.LDc) case *matrix.ComplexMatrix: Aa := A.ComplexArray() Ca := C.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a real or complex number") } bval := beta.Float() if math.IsNaN(bval) { return errors.New("beta not a real number") } uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) zherk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval, Ca[ind.OffsetC:], ind.LDc) default: return errors.New("Unknown type, not implemented") } return }
/* Matrix-vector product with a real symmetric or complex hermitian band matrix. Computes with A real symmetric and banded of order n and with bandwidth k. Y := alpha*A*X + beta*Y ARGUMENTS A float or complex n*n matrix X float or complex n*1 matrix Y float or complex n*1 matrix alpha number (float or complex singleton matrix) beta number (float or complex singleton matrix) OPTIONS uplo PLower or PUpper n integer. If negative, the default value is used. k integer. If negative, the default value is used. The default value is k = max(0,A.Rows()-1). ldA nonnegative integer. ldA >= k+1. If zero, the default vaule is used. incx nonzero integer incy nonzero integer offsetA nonnegative integer offsetx nonnegative integer offsety nonnegative integer */ func Hbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fsbmv, X, Y, A, params) if err != nil { return } if ind.N == 0 { return } if !matrix.EqualTypes(A, X, Y) { return errors.New("Parameters not of same type") } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } uplo := linalg.ParamString(params.Uplo) dsbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY) case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() Aa := A.ComplexArray() aval := alpha.Complex() bval := beta.Complex() uplo := linalg.ParamString(params.Uplo) zhbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY) //zhbmv(uplo, ind.N, aval, Aa[ind.OffsetA:], ind.LDa, // Xa[ind.OffsetX:], ind.IncX, // bval, Ya[ind.OffsetY:], ind.IncY) default: return errors.New("Unknown type, not implemented") } return }
// See function Dotc. func DotcComplex(X, Y *matrix.ComplexMatrix, opts ...linalg.Option) (v complex128, err error) { v = 0.0 ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fdot, X, Y) if err != nil { return } if ind.Nx == 0 { return } Xa := X.ComplexArray() Ya := Y.ComplexArray() v = zdotc(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) return }
func GesvdComplex(A, S, U, Vt *matrix.ComplexMatrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) err = checkGesvd(ind, pars, A, S, U, Vt) if err != nil { return err } if ind.M == 0 || ind.N == 0 { return nil } return errors.New("GesvdComplex not implemented yet") }
// See function Asum. func AsumFloat(X *matrix.FloatMatrix, opts ...linalg.Option) (v float64) { v = math.NaN() ind := linalg.GetIndexOpts(opts...) err := check_level1_func(ind, fasum, X, nil) if err != nil { return } if ind.Nx == 0 { v = 0.0 return } Xa := X.FloatArray() v = dasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX) return }
// See functin Dot. func DotFloat(X, Y *matrix.FloatMatrix, opts ...linalg.Option) (v float64) { v = math.NaN() ind := linalg.GetIndexOpts(opts...) err := check_level1_func(ind, fdot, X, Y) if err != nil { return } if ind.Nx == 0 { v = 0.0 return } Xa := X.FloatArray() Ya := Y.FloatArray() v = ddot(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) return }
/* Solution of a triangular system of equations with multiple righthand sides. (L3) Trsm(A, B, alpha, side=PLeft, uplo=PLower, transA=PNoTrans, diag=PNonUnit, m=-1, n=-1, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) Computes B := alpha*A^{-1}*B if transA is PNoTrans and side = PLeft B := alpha*B*A^{-1} if transA is PNoTrans and side = PRight B := alpha*A^{-T}*B if transA is PTrans and side = PLeft B := alpha*B*A^{-T} if transA is PTrans and side = PRight B := alpha*A^{-H}*B if transA is PConjTrans and side = PLeft B := alpha*B*A^{-H} if transA is PConjTrans and side = PRight B is m by n and A is triangular. The code does not verify whether A is nonsingular. ARGUMENTS A float or complex matrix. B float or complex matrix. Must have the same type as A. alpha number (float or complex). Complex alpha is only allowed if A is complex. OPTIONS side PLeft or PRight uplo PLower or PUpper transA PNoTrans or PTrans diag PNonUnit or PUnit m integer. If negative, the default value is used. The default value is m = A.Rows or if side == PRight m = B.Rows If the default value is used and side is PLeft, m must be equal to A.Cols. n integer. If negative, the default value is used. The default value is n = B.Cols or if side )= PRight n = A.Rows. If the default value is used and side is PRight, n must be equal to A.Cols. ldA nonnegative integer. ldA >= max(1,m) of if side == PRight lda >= max(1,n). If zero, the default value is used. ldB nonnegative integer. ldB >= max(1,m). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer */ func Trsm(A, B matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, ftrsm, A, B, nil, params) if err != nil { return } if !matrix.EqualTypes(A, B) { return errors.New("Parameters not of same type") } switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() aval := alpha.Float() if math.IsNaN(aval) { return errors.New("alpha or beta not a number") } uplo := linalg.ParamString(params.Uplo) transA := linalg.ParamString(params.TransA) side := linalg.ParamString(params.Side) diag := linalg.ParamString(params.Diag) dtrsm(side, uplo, transA, diag, ind.M, ind.N, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: Aa := A.ComplexArray() Ba := B.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a number") } uplo := linalg.ParamString(params.Uplo) transA := linalg.ParamString(params.TransA) side := linalg.ParamString(params.Side) diag := linalg.ParamString(params.Diag) ztrsm(side, uplo, transA, diag, ind.M, ind.N, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) default: return errors.New("Unknown type, not implemented") } return }
/* General rank-1 update. (L2) Ger(X, Y, A, alpha=1.0, m=A.Rows, n=A.Cols, incx=1, incy=1, ldA=max(1,A.Rows), offsetx=0, offsety=0, offsetA=0) COMPUTES A := A + alpha*X*Y^H with A m*n, real or complex. ARGUMENTS X float or complex matrix. Y float or complex matrix. Must have the same type as X. A float or complex matrix. Must have the same type as X. alpha number (float or complex singleton matrix). OPTIONS m integer. If negative, the default value is used. n integer. If negative, the default value is used. incx nonzero integer incy nonzero integer ldA nonnegative integer. ldA >= max(1,m). If zero, the default value is used. offsetx nonnegative integer offsety nonnegative integer offsetA nonnegative integer; */ func Ger(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters if !matrix.EqualTypes(A, X, Y) { err = errors.New("Parameters not of same type") return } params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fger, X, Y, A, params) if err != nil { return } if ind.N == 0 || ind.M == 0 { return } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() aval := alpha.Float() if math.IsNaN(aval) { return errors.New("alpha not a number") } dger(ind.M, ind.N, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa) case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() Aa := A.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a number") } zgerc(ind.M, ind.N, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa) default: return errors.New("Unknown type, not implemented") } return }
/* Matrix-vector product with a general banded matrix. (L2) Computes Y := alpha*A*X + beta*Y, if trans = PNoTrans Y := alpha*A^T*X + beta*Y, if trans = PTrans Y := beta*y, if n=0, m>0, and trans = PNoTrans Y := beta*y, if n>0, m=0, and trans = PTrans The matrix A is m by n with upper bandwidth ku and lower bandwidth kl. Returns immediately if n=0 and trans is 'Trans', or if m=0 and trans is 'N'. ARGUMENTS X float n*1 matrix. Y float m*1 matrix A float m*n matrix. alpha number (float). beta number (float). OPTIONS trans NoTrans or Trans m nonnegative integer, default A.Rows() kl nonnegative integer n nonnegative integer. If negative, the default value is used. ku nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= kl+ku+1. If zero, the default value is used. incx nonzero integer, default =1 incy nonzero integer, default =1 offsetA nonnegative integer, default =0 offsetx nonnegative integer, default =0 offsety nonnegative integer, default =0 */ func Gbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fgbmv, X, Y, A, params) if err != nil { return } if ind.M == 0 && ind.N == 0 { return } if !matrix.EqualTypes(A, X, Y) { return errors.New("Parameters not of same type") } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } if params.Trans == linalg.PNoTrans && ind.N == 0 { dscal(ind.M, bval, Ya[ind.OffsetY:], ind.IncY) } else if params.Trans == linalg.PTrans && ind.M == 0 { dscal(ind.N, bval, Ya[ind.OffsetY:], ind.IncY) } else { trans := linalg.ParamString(params.Trans) dgbmv(trans, ind.M, ind.N, ind.Kl, ind.Ku, aval, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY) } case *matrix.ComplexMatrix: return errors.New("Not implemented yet for complx.Matrix") default: return errors.New("Unknown type, not implemented") } return }
func PotrfFloat(A *matrix.FloatMatrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) err = checkPotrf(ind, A) if ind.N == 0 { return nil } Aa := A.FloatArray() uplo := linalg.ParamString(pars.Uplo) info := dpotrf(uplo, ind.N, Aa[ind.OffsetA:], ind.LDa) if info != 0 { return errors.New(fmt.Sprintf("Potrf: call error %d", info)) } return nil }