コード例 #1
0
ファイル: testcvx.go プロジェクト: hrautila/go.opt.old
func TestSymm() {
	x := matrix.FloatNew(3, 3, []float64{1, 2, 3, 4, 5, 6, 7, 8, 9})
	r := matrix.FloatNew(3, 3, []float64{1, 2, 3, 2, 5, 6, 3, 6, 9})
	fmt.Printf("x=\n%v\n", x)
	cvx.Symm(x, 3, 0)
	fmt.Printf("x=\n%v\n", x)
	if x.Equal(r) {
		fmt.Printf("OK\n")
	} else {
		fmt.Printf("FAILED\n")
	}
}
コード例 #2
0
ファイル: lapack_test.go プロジェクト: hrautila/go.opt.old
func TestDGetrf(t *testing.T) {
	ipiv := make([]int32, 3)
	A := matrix.FloatNew(3, 2, []float64{1, 2, 3, 4, 5, 6})
	fmt.Printf("pre A:\n%s\n", A)
	err := Getrf(A, ipiv)
	fmt.Printf("err=%s, ipiv=%s\n", err, ipiv)
	fmt.Printf("post A:\n%s\n", A)
}
コード例 #3
0
ファイル: blas_test.go プロジェクト: hrautila/go.opt.old
func TestDgemv(t *testing.T) {
	fmt.Printf("* L2 * test gemv: Y = alpha * A * X + beta * Y\n")
	A := matrix.FloatNew(3, 2, []float64{1, 1, 1, 2, 2, 2})
	X := matrix.FloatVector([]float64{1, 1})
	Y := matrix.FloatVector([]float64{0, 0, 0})
	alpha := matrix.FScalar(1.0)
	beta := matrix.FScalar(0.0)
	fmt.Printf("before: alpha=1.0, beta=0.0\nA=\n%v\nX=\n%v\nY=\n%v\n", A, X, Y)
	err := Gemv(A, X, Y, alpha, beta)
	fmt.Printf("after:\nA=\n%v\nX=\n%v\nY=\n%v\n", A, X, Y)
	fmt.Printf("* L2 * test gemv: X = alpha * A.T * Y + beta * X\n")
	err = Gemv(A, Y, X, alpha, beta, linalg.OptTrans)
	if err != nil {
		fmt.Printf("error: %s\n", err)
	}
	fmt.Printf("after:\nA=\n%v\nX=\n%v\nY=\n%v\n", A, X, Y)
}
コード例 #4
0
ファイル: testqp.go プロジェクト: hrautila/go.opt.old
func main() {

	Sdata := [][]float64{
		[]float64{ 4e-2,  6e-3, -4e-3,   0.0 },
        []float64{ 6e-3,  1e-2,  0.0,    0.0 },
        []float64{-4e-3,  0.0,   2.5e-3, 0.0 },
        []float64{ 0.0,   0.0,   0.0,    0.0 }}

	pbar := matrix.FloatVector([]float64{.12, .10, .07, .03})
	S := matrix.FloatMatrixStacked(Sdata)
	n := pbar.Rows()
	G := matrix.FloatDiagonal(n, -1.0)
	h := matrix.FloatZeros(n, 1)
	A := matrix.FloatWithValue(1, n, 1.0)
	b := matrix.FloatNew(1,1, []float64{1.0})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = true

	mu := 1.0
	Smu := S.Copy().Scale(mu)
	pbarNeg := pbar.Copy().Scale(-1.0)
	fmt.Printf("Smu=\n%v\n", Smu.String())
	fmt.Printf("-pbar=\n%v\n", pbarNeg.String())

	sol, err := cvx.Qp(Smu, pbarNeg, G, h, A, b, &solopts, nil)

	fmt.Printf("status: %v\n", err)
	if sol != nil && sol.Status == cvx.Optimal {
		x := sol.Result.At("x")[0]
		ret := blas.DotFloat(x, pbar)
		risk := math.Sqrt(blas.DotFloat(x, S.Times(x)))
		fmt.Printf("ret=%.3f, risk=%.3f\n", ret, risk)
		fmt.Printf("x=\n%v\n", x)
	}
}
コード例 #5
0
ファイル: solvers.go プロジェクト: hrautila/go.opt.old
//    Solves a pair of primal and dual SDPs
//
//        minimize    c'*x
//        subject to  Gl*x + sl = hl
//                    mat(Gs[k]*x) + ss[k] = hs[k], k = 0, ..., N-1
//                    A*x = b
//                    sl >= 0,  ss[k] >= 0, k = 0, ..., N-1
//
//        maximize    -hl'*z - sum_k trace(hs[k]*zs[k]) - b'*y
//        subject to  Gl'*zl + sum_k Gs[k]'*vec(zs[k]) + A'*y + c = 0
//                    zl >= 0,  zs[k] >= 0, k = 0, ..., N-1.
//
//    The inequalities sl >= 0 and zl >= 0 are elementwise vector
//    inequalities.  The inequalities ss[k] >= 0, zs[k] >= 0 are matrix
//    inequalities, i.e., the symmetric matrices ss[k] and zs[k] must be
//    positive semidefinite.  mat(Gs[k]*x) is the symmetric matrix X with
//    X[:] = Gs[k]*x.  For a symmetric matrix, zs[k], vec(zs[k]) is the
//    vector zs[k][:].
//
func Sdp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghs *FloatMatrixSet, solopts *SolverOptions, primalstart, dualstart *FloatMatrixSet) (sol *Solution, err error) {
	if c == nil {
		err = errors.New("'c' must a column matrix")
		return
	}
	n := c.Rows()
	if n < 1 {
		err = errors.New("Number of variables must be at least 1")
		return
	}
	if Gl == nil {
		Gl = matrix.FloatZeros(0, n)
	}
	if Gl.Cols() != n {
		err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n))
		return
	}
	ml := Gl.Rows()
	if hl == nil {
		hl = matrix.FloatZeros(0, 1)
	}
	if !hl.SizeMatch(ml, 1) {
		err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml))
		return
	}
	Gsset := Ghs.At("Gs")
	ms := make([]int, 0)
	for i, Gs := range Gsset {
		if Gs.Cols() != n {
			err = errors.New(fmt.Sprintf("'Gs' must be list of matrices with %d columns", n))
			return
		}
		sz := int(math.Sqrt(float64(Gs.Rows())))
		if Gs.Rows() != sz*sz {
			err = errors.New(fmt.Sprintf("the squareroot of the number of rows of 'Gq[%d]' is not an integer", i))
			return
		}
		ms = append(ms, sz)
	}

	hsset := Ghs.At("hs")
	if len(Gsset) != len(hsset) {
		err = errors.New(fmt.Sprintf("'hs' must be a list of %d matrices", len(Gsset)))
		return
	}
	for i, hs := range hsset {
		if !hs.SizeMatch(ms[i], ms[i]) {
			s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,%d)",
				i, hs.Rows(), hs.Cols(), ms[i], ms[i])
			err = errors.New(s)
			return
		}
	}
	if A == nil {
		A = matrix.FloatZeros(0, n)
	}
	if A.Cols() != n {
		err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n))
		return
	}
	p := A.Rows()
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if !b.SizeMatch(p, 1) {
		err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p))
		return
	}
	dims := DSetNew("l", "q", "s")
	dims.Set("l", []int{ml})
	dims.Set("s", ms)
	N := dims.Sum("l") + dims.SumSquared("s")

	// Map hs matrices to h vector
	h := matrix.FloatZeros(N, 1)
	h.SetIndexes(matrix.MakeIndexSet(0, ml, 1), hl.FloatArray()[:ml])
	ind := ml
	for k, hs := range hsset {
		h.SetIndexes(matrix.MakeIndexSet(ind, ind+ms[k]*ms[k], 1), hs.FloatArray())
		ind += ms[k] * ms[k]
	}

	Gargs := make([]*matrix.FloatMatrix, 0)
	Gargs = append(Gargs, Gl)
	Gargs = append(Gargs, Gsset...)
	G, sizeg := matrix.FloatMatrixCombined(matrix.StackDown, Gargs...)

	var pstart, dstart *FloatMatrixSet = nil, nil
	if primalstart != nil {
		pstart = FloatSetNew("x", "s")
		pstart.Set("x", primalstart.At("x")[0])
		slset := primalstart.At("sl")
		margs := make([]*matrix.FloatMatrix, 0, len(slset)+1)
		margs = append(margs, primalstart.At("s")[0])
		margs = append(margs, slset...)
		sl, _ := matrix.FloatMatrixCombined(matrix.StackDown, margs...)
		pstart.Set("s", sl)
	}

	if dualstart != nil {
		dstart = FloatSetNew("y", "z")
		dstart.Set("y", dualstart.At("y")[0])
		zlset := primalstart.At("zl")
		margs := make([]*matrix.FloatMatrix, 0, len(zlset)+1)
		margs = append(margs, dualstart.At("z")[0])
		margs = append(margs, zlset...)
		zl, _ := matrix.FloatMatrixCombined(matrix.StackDown, margs...)
		dstart.Set("z", zl)
	}

	sol, err = ConeLp(c, G, h, A, b, dims, solopts, pstart, dstart)
	// unpack sol.Result
	if err == nil {
		s := sol.Result.At("s")[0]
		sl := matrix.FloatVector(s.FloatArray()[:ml])
		sol.Result.Append("sl", sl)
		ind := ml
		for _, m := range ms {
			sk := matrix.FloatNew(m, m, s.FloatArray()[ind:ind+m*m])
			sol.Result.Append("ss", sk)
			ind += m * m
		}

		z := sol.Result.At("z")[0]
		zl := matrix.FloatVector(s.FloatArray()[:ml])
		sol.Result.Append("zl", zl)
		ind = ml
		for i, k := range sizeg[1:] {
			zk := matrix.FloatNew(ms[i], ms[i], z.FloatArray()[ind:ind+k])
			sol.Result.Append("zs", zk)
			ind += k
		}
	}
	sol.Result.Remove("s")
	sol.Result.Remove("z")

	return

}