// Returns Y = X^H*Y for real or complex X, Y. // // ARGUMENTS // X float or complex matrix // Y float or complex matrix. Must have the same type as X. // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is equal to nx = 1+(len(x)-offsetx-1)/incx or 0 if // len(x) > offsetx+1. If the default value is used, it must be equal to // ny = 1+(len(y)-offsetx-1)/|incy| or 0 if len(y) > offsety+1 // incx nonzero integer [default=1] // incy nonzero integer [default=1] // offsetx nonnegative integer [default=0] // offsety nonnegative integer [default=0] // func Dot(X, Y matrix.Matrix, opts ...linalg.Option) (v matrix.Scalar) { v = matrix.FScalar(math.NaN()) //cv = cmplx.NaN() ind := linalg.GetIndexOpts(opts...) err := check_level1_func(ind, fdot, X, Y) if err != nil { return } if ind.Nx == 0 { return matrix.FScalar(0.0) } sameType := matrix.EqualTypes(X, Y) if ! sameType { err = errors.New("arrays not of same type") return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() v = matrix.CScalar(zdotc(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)) case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() v = matrix.FScalar(ddot(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)) //default: // err = errors.New("not implemented for parameter types", ) } return }
// Copies a vector X to a vector Y (Y := X). // // ARGUMENTS // X float or complex matrix // Y float or complex matrix. Must have the same type as X. // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is given by 1+(len(x)-offsetx-1)/incx or 0 // if len(x) > offsetx+1 // incx nonzero integer // incy nonzero integer // offsetx nonnegative integer // offsety nonnegative integer; // func Copy(X, Y matrix.Matrix, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fcopy, X, Y) if err != nil { return } if ind.Nx == 0 { return } sameType := matrix.EqualTypes(X, Y) if ! sameType { err = errors.New("arrays not same type") return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() zcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() dcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) default: err = errors.New("not implemented for parameter types", ) } return }
/* Symmetric rank-2 update. syr2(x, y, A, uplo='L', alpha=1.0, n=A.size[0], incx=1, incy=1, ldA=max(1,A.size[0]), offsetx=0, offsety=0, offsetA=0) PURPOSE Computes A := A + alpha*(x*y^T + y*x^T) with A real symmetric matrix of order n. ARGUMENTS x float matrix y float matrix A float matrix alpha real number (int or float) OPTIONS uplo 'L' or 'U' n integer. If negative, the default value is used. incx nonzero integer incy nonzero integer ldA nonnegative integer. ldA >= max(1,n). If zero the default value is used. offsetx nonnegative integer offsety nonnegative integer offsetA nonnegative integer; */ func Syr2(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fsyr2, X, Y, A, params) if err != nil { return } if !matrix.EqualTypes(A, X, Y) { return errors.New("Parameters not of same type") } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := X.FloatArray() Aa := A.FloatArray() aval := alpha.Float() if math.IsNaN(aval) { return errors.New("alpha not a number") } uplo := linalg.ParamString(params.Uplo) dsyr2(uplo, ind.N, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa) case *matrix.ComplexMatrix: return errors.New("Not implemented yet for complx.Matrix") default: return errors.New("Unknown type, not implemented") } return }
/* Inverse of a real or complex matrix. Getri(A, ipiv, n=A.Rows, ldA = max(1,A.Rows), offsetA=0) PURPOSE Computes the inverse of real or complex matrix of order n. On entry, A and ipiv contain the LU factorization, as returned by gesv() or getrf(). On exit A is replaced by the inverse. ARGUMENTS A float or complex matrix ipiv int vector OPTIONS n nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. offsetA nonnegative integer; */ func Getri(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Cols() } if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.OffsetA < 0 { return errors.New("lda") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ipiv != nil && len(ipiv) < ind.N { return errors.New("size ipiv") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() info = dgetri(ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv) case *matrix.ComplexMatrix: } if info != 0 { return errors.New("Getri call error") } return nil }
/* Solution of a triangular and banded set of equations. Tbsv(A, X, uplo=PLower, trans=PNoTrans, diag=PNonDiag, n=A.Cols, k=max(0,A.Rows-1), ldA=A.size[0], incx=1, offsetA=0, offsetx=0) PURPOSE X := A^{-1}*X, if trans is PNoTrans X := A^{-T}*X, if trans is PTrans X := A^{-H}*X, if trans is PConjTrans A is banded triangular of order n and with bandwidth k. ARGUMENTS A float or complex m*k matrix. X float or complex k*1 matrix. Must have the same type as A. OPTIONS uplo PLower or PUpper trans PNoTrans, PTrans or PConjTrans diag PNoNUnit or PUnit n nonnegative integer. If negative, the default value is used. k nonnegative integer. If negative, the default value is used. ldA nonnegative integer. ldA >= 1+k. If zero the default value is used. incx nonzero integer offsetA nonnegative integer offsetx nonnegative integer; */ func Tbsv(A, X matrix.Matrix, opts ...linalg.Option) (err error) { var params *linalg.Parameters if !matrix.EqualTypes(A, X) { err = errors.New("Parameters not of same type") return } params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, ftbsv, X, nil, A, params) if err != nil { return } if ind.N == 0 { return } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Aa := A.FloatArray() uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) diag := linalg.ParamString(params.Diag) dtbsv(uplo, trans, diag, ind.N, ind.K, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX) case *matrix.ComplexMatrix: return errors.New("Not implemented yet for complx.Matrix") default: return errors.New("Unknown type, not implemented") } return }
// Scales a vector by a constant (X := alpha*X). // // ARGUMENTS // X float or complex matrix // alpha number (float or complex singleton matrix). Complex alpha is only // allowed if X is complex. // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is equal to 1+(len(x)-offset-1)/inc or 0 // if len(x) > offset+1. // inc positive integer, default = 1 // offset nonnegative integer, default = 0 // func Scal(X matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, fscal, X, nil) if err != nil { return } if ind.Nx == 0 { return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() cval := alpha.Complex() zscal(ind.Nx, cval, Xa[ind.OffsetX:], ind.IncX) case *matrix.FloatMatrix: Xa := X.FloatArray() rval := alpha.Float() if math.IsNaN(rval) { return errors.New("alpha not float value") } dscal(ind.Nx, rval, Xa[ind.OffsetX:], ind.IncX) default: err = errors.New("not implemented for parameter types", ) } return }
/* Solves a real symmetric or complex Hermitian positive definite set of linear equations, given the Cholesky factorization computed by potrf() or posv(). Potrs(A, B, uplo=PLower, n=A.Rows, nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) PURPOSE Solves A*X = B where A is n by n, real symmetric or complex Hermitian and positive definite, and B is n by nrhs. On entry, A contains the Cholesky factor, as returned by Posv() or Potrf(). On exit B is replaced by the solution X. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. OPTIONS uplo PLower or PUpper n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB positive integer. ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Potrs(A, B matrix.Matrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("lda") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return errors.New("ldb") } if ind.OffsetA < 0 { return errors.New("offsetA") } if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ind.OffsetB < 0 { return errors.New("offsetB") } if B.NumElements() < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } if !matrix.EqualTypes(A, B) { return errors.New("types") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() uplo := linalg.ParamString(pars.Uplo) info = dpotrs(uplo, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return errors.New("ComplexMatrx: not implemented yet") } if info != 0 { return errors.New("Potrs failed") } return nil }
/* Rank-k update of symmetric matrix. (L3) Herk(A, C, alpha, beta, uplo=PLower, trans=PNoTrans, n=-1, k=-1, ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetB=0) Computes C := alpha*A*A^T + beta*C, if trans is PNoTrans C := alpha*A^T*A + beta*C, if trans is PTrans C is symmetric (real or complex) of order n. The inner dimension of the matrix product is k. If k=0 this is interpreted as C := beta*C. ARGUMENTS A float or complex matrix. C float or complex matrix. Must have the same type as A. alpha number (float or complex singleton matrix). Complex alpha is only allowed if A is complex. beta number (float or complex singleton matrix). Complex beta is only allowed if A is complex. OPTIONS uplo PLower or PUpper trans PNoTrans or PTrans n integer. If negative, the default value is used. The default value is n = A.Rows or if trans == PNoTrans n = A.Cols. k integer. If negative, the default value is used. The default value is k = A.Cols, or if trans == PNoTrans k = A.Rows. ldA nonnegative integer. ldA >= max(1,n) or if trans != PNoTrans ldA >= max(1,k). If zero, the default value is used. ldC nonnegative integer. ldC >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetC nonnegative integer; */ func Herk(A, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fsyrk, A, nil, C, params) if e != nil || err != nil { return } if !matrix.EqualTypes(A, C) { return errors.New("Parameters not of same type") } switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ca := C.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) dsyrk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval, Ca[ind.OffsetC:], ind.LDc) case *matrix.ComplexMatrix: Aa := A.ComplexArray() Ca := C.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a real or complex number") } bval := beta.Float() if math.IsNaN(bval) { return errors.New("beta not a real number") } uplo := linalg.ParamString(params.Uplo) trans := linalg.ParamString(params.Trans) zherk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval, Ca[ind.OffsetC:], ind.LDc) default: return errors.New("Unknown type, not implemented") } return }
/* Solution of a triangular system of equations with multiple righthand sides. (L3) Trsm(A, B, alpha, side=PLeft, uplo=PLower, transA=PNoTrans, diag=PNonUnit, m=-1, n=-1, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) Computes B := alpha*A^{-1}*B if transA is PNoTrans and side = PLeft B := alpha*B*A^{-1} if transA is PNoTrans and side = PRight B := alpha*A^{-T}*B if transA is PTrans and side = PLeft B := alpha*B*A^{-T} if transA is PTrans and side = PRight B := alpha*A^{-H}*B if transA is PConjTrans and side = PLeft B := alpha*B*A^{-H} if transA is PConjTrans and side = PRight B is m by n and A is triangular. The code does not verify whether A is nonsingular. ARGUMENTS A float or complex matrix. B float or complex matrix. Must have the same type as A. alpha number (float or complex). Complex alpha is only allowed if A is complex. OPTIONS side PLeft or PRight uplo PLower or PUpper transA PNoTrans or PTrans diag PNonUnit or PUnit m integer. If negative, the default value is used. The default value is m = A.Rows or if side == PRight m = B.Rows If the default value is used and side is PLeft, m must be equal to A.Cols. n integer. If negative, the default value is used. The default value is n = B.Cols or if side )= PRight n = A.Rows. If the default value is used and side is PRight, n must be equal to A.Cols. ldA nonnegative integer. ldA >= max(1,m) of if side == PRight lda >= max(1,n). If zero, the default value is used. ldB nonnegative integer. ldB >= max(1,m). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer */ func Trsm(A, B matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, ftrsm, A, B, nil, params) if err != nil { return } if !matrix.EqualTypes(A, B) { return errors.New("Parameters not of same type") } switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() aval := alpha.Float() if math.IsNaN(aval) { return errors.New("alpha or beta not a number") } uplo := linalg.ParamString(params.Uplo) transA := linalg.ParamString(params.TransA) side := linalg.ParamString(params.Side) diag := linalg.ParamString(params.Diag) dtrsm(side, uplo, transA, diag, ind.M, ind.N, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: Aa := A.ComplexArray() Ba := B.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a number") } uplo := linalg.ParamString(params.Uplo) transA := linalg.ParamString(params.TransA) side := linalg.ParamString(params.Side) diag := linalg.ParamString(params.Diag) ztrsm(side, uplo, transA, diag, ind.M, ind.N, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) default: return errors.New("Unknown type, not implemented") } return }
/* QR factorization. Geqrf(A, tau, m=A.Rows, n=A.Cols, ldA=max(1,A.Rows), offsetA=0) PURPOSE QR factorization of an m by n real or complex matrix A: A = Q*R = [Q1 Q2] * [R1; 0] if m >= n A = Q*R = Q * [R1 R2] if m <= n, where Q is m by m and orthogonal/unitary and R is m by n with R1 upper triangular. On exit, R is stored in the upper triangular part of A. Q is stored as a product of k=min(m,n) elementary reflectors. The parameters of the reflectors are stored in the first k entries of tau and in the lower triangular part of the first k columns of A. ARGUMENTS A float or complex matrix tau float or complex matrix of length at least min(m,n). Must have the same type as A. m integer. If negative, the default value is used. n integer. If negative, the default value is used. ldA nonnegative integer. ldA >= max(1,m). If zero, the default value is used. offsetA nonnegative integer */ func Geqrf(A, tau matrix.Matrix, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() } if ind.M < 0 { ind.M = A.Cols() } if ind.N == 0 || ind.M == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.M) { return errors.New("lda") } if ind.OffsetA < 0 { return errors.New("offsetA") } if A.NumElements() < ind.OffsetA+ind.K*ind.LDa { return errors.New("sizeA") } if tau.NumElements() < min(ind.M, ind.N) { return errors.New("sizeTau") } if !matrix.EqualTypes(A, tau) { return errors.New("not same type") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() taua := tau.FloatArray() info = dgeqrf(ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, taua) case *matrix.ComplexMatrix: return errors.New("ComplexMatrx: not implemented yet") } if info != 0 { return errors.New("Geqrf failed") } return nil }
/* LU factorization of a real or complex tridiagonal matrix. Gttrf(dl, d, du, du2, ipiv, n=len(d)-offsetd, offsetdl=0, offsetd=0, offsetdu=0) PURPOSE Factors an n by n real or complex tridiagonal matrix A as A = P*L*U. A is specified by its lower diagonal dl, diagonal d, and upper diagonal du. On exit dl, d, du, du2 and ipiv contain the details of the factorization. ARGUMENTS. DL float or complex matrix D float or complex matrix. Must have the same type as DL. DU float or complex matrix. Must have the same type as DL. DU2 float or complex matrix of length at least n-2. Must have the same type as DL. ipiv int vector of length at least n OPTIONS n nonnegative integer. If negative, the default value is used. offsetdl nonnegative integer offsetd nonnegative integer offsetdu nonnegative integer */ func Gtrrf(DL, D, DU, DU2 matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { ind := linalg.GetIndexOpts(opts...) if ind.OffsetD < 0 { return errors.New("offset D") } if ind.N < 0 { ind.N = D.NumElements() - ind.OffsetD } if ind.N < 0 { return errors.New("size D") } if ind.N == 0 { return nil } if ind.OffsetDL < 0 { return errors.New("offset DL") } sizeDL := DL.NumElements() if sizeDL < ind.OffsetDL+ind.N-1 { return errors.New("sizeDL") } if ind.OffsetDU < 0 { return errors.New("offset DU") } sizeDU := DU.NumElements() if sizeDU < ind.OffsetDU+ind.N-1 { return errors.New("sizeDU") } sizeDU2 := DU2.NumElements() if sizeDU2 < ind.N-2 { return errors.New("sizeDU2") } if len(ipiv) < ind.N { return errors.New("size ipiv") } info := -1 switch DL.(type) { case *matrix.FloatMatrix: DLa := DL.FloatArray() Da := D.FloatArray() DUa := DU.FloatArray() DU2a := DU2.FloatArray() info = dgttrf(ind.N, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a, ipiv) case *matrix.ComplexMatrix: } if info != 0 { return errors.New("Gttrf call error") } return nil }
// Returns ||Re x||_1 + ||Im x||_1. // // ARGUMENTS // X float or complex matrix // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is equal to n = 1+(len(x)-offset-1)/inc or 0 if // len(x) > offset+1 // inc positive integer // offset nonnegative integer // func Asum(X matrix.Matrix, opts ...linalg.Option) (v matrix.Scalar) { v = matrix.FScalar(math.NaN()) ind := linalg.GetIndexOpts(opts...) err := check_level1_func(ind, fasum, X, nil) if err != nil { return } if ind.Nx == 0 { return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() v = matrix.FScalar(dzasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX)) case *matrix.FloatMatrix: Xa := X.FloatArray() v = matrix.FScalar(dasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX)) //default: // err = errors.New("not implemented for parameter types", ) } return }
// Constant times a vector plus a vector (Y := alpha*X+Y). // // ARGUMENTS // X float or complex matrix // Y float or complex matrix. Must have the same type as X. // alpha number (float or complex singleton matrix). Complex alpha is only // allowed if x is complex. // // OPTIONS // n integer. If n<0, the default value of n is used. // The default value is equal to 1+(len(x)-offsetx-1)/incx // or 0 if len(x) >= offsetx+1 // incx nonzero integer // incy nonzero integer // offsetx nonnegative integer // offsety nonnegative integer; // func Axpy(X, Y matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { ind := linalg.GetIndexOpts(opts...) err = check_level1_func(ind, faxpy, X, Y) if err != nil { return } if ind.Nx == 0 { return } sameType := matrix.EqualTypes(X, Y) if ! sameType { err = errors.New("arrays not same type") return } switch X.(type) { case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not complex value") } zaxpy(ind.Nx, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() aval := alpha.Float() if math.IsNaN(aval) { return errors.New("alpha not float value") } daxpy(ind.Nx, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY) default: err = errors.New("not implemented for parameter types", ) } return }
/* General matrix-matrix product. (L3) PURPOSE Computes C := alpha*A*B + beta*C if transA = PNoTrans and transB = PNoTrans. C := alpha*A^T*B + beta*C if transA = PTrans and transB = PNoTrans. C := alpha*A^H*B + beta*C if transA = PConjTrans and transB = PNoTrans. C := alpha*A*B^T + beta*C if transA = PNoTrans and transB = PTrans. C := alpha*A^T*B^T + beta*C if transA = PTrans and transB = PTrans. C := alpha*A^H*B^T + beta*C if transA = PConjTrans and transB = PTrans. C := alpha*A*B^H + beta*C if transA = PNoTrans and transB = PConjTrans. C := alpha*A^T*B^H + beta*C if transA = PTrans and transB = PConjTrans. C := alpha*A^H*B^H + beta*C if transA = PConjTrans and transB = PConjTrans. The number of rows of the matrix product is m. The number of columns is n. The inner dimension is k. If k=0, this reduces to C := beta*C. ARGUMENTS A float or complex matrix, m*k B float or complex matrix, k*n C float or complex matrix, m*n alpha number (float or complex singleton matrix) beta number (float or complex singleton matrix) OPTIONS transA PNoTrans, PTrans or PConjTrans transB PNoTrans, PTrans or PConjTrans m integer. If negative, the default value is used. The default value is m = A.Rows of if transA != PNoTrans m = A.Cols. n integer. If negative, the default value is used. The default value is n = (transB == PNoTrans) ? B.Cols : B.Rows. k integer. If negative, the default value is used. The default value is k=A.Cols or if transA != PNoTrans) k = A.Rows, transA=PNoTrans. If the default value is used it should also be equal to (transB == PNoTrans) ? B.Rows : B.Cols. ldA nonnegative integer. ldA >= max(1,m) of if transA != NoTrans max(1,k). If zero, the default value is used. ldB nonnegative integer. ldB >= max(1,k) or if transB != NoTrans max(1,n). If zero, the default value is used. ldC nonnegative integer. ldC >= max(1,m). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer offsetC nonnegative integer; */ func Gemm(A, B, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { params, e := linalg.GetParameters(opts...) if e != nil { err = e return } ind := linalg.GetIndexOpts(opts...) err = check_level3_func(ind, fgemm, A, B, C, params) if err != nil { return } if ind.M == 0 || ind.N == 0 { return } if !matrix.EqualTypes(A, B, C) { return errors.New("Parameters not of same type") } switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() Ca := C.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } transB := linalg.ParamString(params.TransB) transA := linalg.ParamString(params.TransA) dgemm(transA, transB, ind.M, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval, Ca[ind.OffsetC:], ind.LDc) case *matrix.ComplexMatrix: Aa := A.ComplexArray() Ba := B.ComplexArray() Ca := C.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a number") } bval := beta.Complex() if cmplx.IsNaN(bval) { return errors.New("beta not a number") } transB := linalg.ParamString(params.TransB) transA := linalg.ParamString(params.TransA) zgemm(transA, transB, ind.M, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval, Ca[ind.OffsetC:], ind.LDc) default: return errors.New("Unknown type, not implemented") } return }
/* Matrix-vector product with a real symmetric or complex hermitian band matrix. Computes with A real symmetric and banded of order n and with bandwidth k. Y := alpha*A*X + beta*Y ARGUMENTS A float or complex n*n matrix X float or complex n*1 matrix Y float or complex n*1 matrix alpha number (float or complex singleton matrix) beta number (float or complex singleton matrix) OPTIONS uplo PLower or PUpper n integer. If negative, the default value is used. k integer. If negative, the default value is used. The default value is k = max(0,A.Rows()-1). ldA nonnegative integer. ldA >= k+1. If zero, the default vaule is used. incx nonzero integer incy nonzero integer offsetA nonnegative integer offsetx nonnegative integer offsety nonnegative integer */ func Hbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fsbmv, X, Y, A, params) if err != nil { return } if ind.N == 0 { return } if !matrix.EqualTypes(A, X, Y) { return errors.New("Parameters not of same type") } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } uplo := linalg.ParamString(params.Uplo) dsbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY) case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() Aa := A.ComplexArray() aval := alpha.Complex() bval := beta.Complex() uplo := linalg.ParamString(params.Uplo) zhbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY) //zhbmv(uplo, ind.N, aval, Aa[ind.OffsetA:], ind.LDa, // Xa[ind.OffsetX:], ind.IncX, // bval, Ya[ind.OffsetY:], ind.IncY) default: return errors.New("Unknown type, not implemented") } return }
/* General rank-1 update. (L2) Ger(X, Y, A, alpha=1.0, m=A.Rows, n=A.Cols, incx=1, incy=1, ldA=max(1,A.Rows), offsetx=0, offsety=0, offsetA=0) COMPUTES A := A + alpha*X*Y^H with A m*n, real or complex. ARGUMENTS X float or complex matrix. Y float or complex matrix. Must have the same type as X. A float or complex matrix. Must have the same type as X. alpha number (float or complex singleton matrix). OPTIONS m integer. If negative, the default value is used. n integer. If negative, the default value is used. incx nonzero integer incy nonzero integer ldA nonnegative integer. ldA >= max(1,m). If zero, the default value is used. offsetx nonnegative integer offsety nonnegative integer offsetA nonnegative integer; */ func Ger(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters if !matrix.EqualTypes(A, X, Y) { err = errors.New("Parameters not of same type") return } params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fger, X, Y, A, params) if err != nil { return } if ind.N == 0 || ind.M == 0 { return } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() aval := alpha.Float() if math.IsNaN(aval) { return errors.New("alpha not a number") } dger(ind.M, ind.N, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa) case *matrix.ComplexMatrix: Xa := X.ComplexArray() Ya := Y.ComplexArray() Aa := A.ComplexArray() aval := alpha.Complex() if cmplx.IsNaN(aval) { return errors.New("alpha not a number") } zgerc(ind.M, ind.N, aval, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa) default: return errors.New("Unknown type, not implemented") } return }
/* Matrix-vector product with a general banded matrix. (L2) Computes Y := alpha*A*X + beta*Y, if trans = PNoTrans Y := alpha*A^T*X + beta*Y, if trans = PTrans Y := beta*y, if n=0, m>0, and trans = PNoTrans Y := beta*y, if n>0, m=0, and trans = PTrans The matrix A is m by n with upper bandwidth ku and lower bandwidth kl. Returns immediately if n=0 and trans is 'Trans', or if m=0 and trans is 'N'. ARGUMENTS X float n*1 matrix. Y float m*1 matrix A float m*n matrix. alpha number (float). beta number (float). OPTIONS trans NoTrans or Trans m nonnegative integer, default A.Rows() kl nonnegative integer n nonnegative integer. If negative, the default value is used. ku nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= kl+ku+1. If zero, the default value is used. incx nonzero integer, default =1 incy nonzero integer, default =1 offsetA nonnegative integer, default =0 offsetx nonnegative integer, default =0 offsety nonnegative integer, default =0 */ func Gbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) { var params *linalg.Parameters params, err = linalg.GetParameters(opts...) if err != nil { return } ind := linalg.GetIndexOpts(opts...) err = check_level2_func(ind, fgbmv, X, Y, A, params) if err != nil { return } if ind.M == 0 && ind.N == 0 { return } if !matrix.EqualTypes(A, X, Y) { return errors.New("Parameters not of same type") } switch X.(type) { case *matrix.FloatMatrix: Xa := X.FloatArray() Ya := Y.FloatArray() Aa := A.FloatArray() aval := alpha.Float() bval := beta.Float() if math.IsNaN(aval) || math.IsNaN(bval) { return errors.New("alpha or beta not a number") } if params.Trans == linalg.PNoTrans && ind.N == 0 { dscal(ind.M, bval, Ya[ind.OffsetY:], ind.IncY) } else if params.Trans == linalg.PTrans && ind.M == 0 { dscal(ind.N, bval, Ya[ind.OffsetY:], ind.IncY) } else { trans := linalg.ParamString(params.Trans) dgbmv(trans, ind.M, ind.N, ind.Kl, ind.Ku, aval, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY) } case *matrix.ComplexMatrix: return errors.New("Not implemented yet for complx.Matrix") default: return errors.New("Unknown type, not implemented") } return }
func SyevrFloat(A, W, Z matrix.Matrix, abstol float64, vlimit []float64, ilimit []int, opts ...linalg.Option) error { var vl, vu float64 var il, iu int pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return errors.New("Syevr: A not square") } } // Check indexes if ind.N == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, A.Rows()) { return errors.New("Syevr: lda") } if pars.Range == linalg.PRangeValue { if vlimit == nil { return errors.New("Syevr: vlimit is nil") } vl = vlimit[0] vu = vlimit[1] if vl >= vu { return errors.New("Syevr: must be: vl < vu") } } else if pars.Range == linalg.PRangeInt { if ilimit == nil { return errors.New("Syevr: ilimit is nil") } il = ilimit[0] iu = ilimit[1] if il < 1 || il > iu || iu > ind.N { return errors.New("Syevr: must be:1 <= il <= iu <= N") } } if pars.Jobz == linalg.PJobValue { if Z == nil { return errors.New("Syevr: Z is nil") } if ind.LDz == 0 { ind.LDz = max(1, Z.Rows()) } if ind.LDz < max(1, ind.N) { return errors.New("Syevr: ldz") } } else { if ind.LDz == 0 { ind.LDz = 1 } if ind.LDz < 1 { return errors.New("Syevr: ldz") } } if ind.OffsetA < 0 { return errors.New("Syevr: OffsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("Syevr: sizeA") } if ind.OffsetW < 0 { return errors.New("Syevr: OffsetW") } sizeW := W.NumElements() if sizeW < ind.OffsetW+ind.N { return errors.New("Syevr: sizeW") } if pars.Jobz == linalg.PJobValue { if ind.OffsetZ < 0 { return errors.New("Syevr: OffsetW") } minZ := ind.OffsetZ + (ind.N-1)*ind.LDz + ind.N if pars.Range == linalg.PRangeInt { minZ = ind.OffsetZ + (iu-il)*ind.LDz + ind.N } if Z.NumElements() < minZ { return errors.New("Syevr: sizeZ") } } Aa := A.FloatArray() Wa := W.FloatArray() var Za []float64 if pars.Jobz == linalg.PJobValue { Za = Z.FloatArray() } else { Za = nil } jobz := linalg.ParamString(pars.Jobz) rnge := linalg.ParamString(pars.Range) uplo := linalg.ParamString(pars.Uplo) info := dsyevr(jobz, rnge, uplo, ind.N, Aa[ind.OffsetA:], ind.LDa, vl, vu, il, iu, ind.M, Wa[ind.OffsetW:], Za, ind.LDz) if info != 0 { return errors.New(fmt.Sprintf("Syevr: call failed %d", info)) } return nil }
/* Solution of a triangular set of equations with multiple righthand sides. Trtrs(A, B, uplo=PLower, trans=PNoTrans, diag=PNonUnit, n=A.Rows, nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) PURPOSE Solves set of equations A*X = B, if trans is PNoTrans A^T*X = B, if trans is PTrans A^H*X = B, if trans is PConjTrans B is n by nrhs and A is triangular of order n. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. OPTIONS uplo PLower or PUpper trans PNoTrans, PTrans, PConjTrans diag PNonUnit, PUnit n nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer. ldA >= max(1,n). If zero, the default value is used. ldB positive integer. ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Trtrs(A, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = A.Rows() if ind.N != A.Cols() { return errors.New("A not square") } } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < max(1, ind.N) { return errors.New("lda") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return errors.New("ldb") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N { return errors.New("sizeA") } if ind.OffsetB < 0 { return errors.New("offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } info := -1 uplo := linalg.ParamString(pars.Uplo) trans := linalg.ParamString(pars.Trans) diag := linalg.ParamString(pars.Diag) switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() info = dtrtrs(uplo, trans, diag, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: } if info != 0 { return errors.New("sytrf failed") } return nil }
func Gtrrs(DL, D, DU, DU2, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.OffsetD < 0 { return errors.New("offset D") } if ind.N < 0 { ind.N = D.NumElements() - ind.OffsetD } if ind.N < 0 { return errors.New("size D") } if ind.N == 0 { return nil } if ind.OffsetDL < 0 { return errors.New("offset DL") } sizeDL := DL.NumElements() if sizeDL < ind.OffsetDL+ind.N-1 { return errors.New("sizeDL") } if ind.OffsetDU < 0 { return errors.New("offset DU") } sizeDU := DU.NumElements() if sizeDU < ind.OffsetDU+ind.N-1 { return errors.New("sizeDU") } sizeDU2 := DU2.NumElements() if sizeDU2 < ind.N-2 { return errors.New("sizeDU2") } if ind.Nrhs < 0 { ind.Nrhs = B.Cols() } if ind.Nrhs == 0 { return nil } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.LDb < max(1, ind.N) { return errors.New("ldB") } if ind.OffsetB < 0 { return errors.New("offset B") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } if len(ipiv) < ind.N { return errors.New("size ipiv") } DLa := DL.FloatArray() Da := D.FloatArray() DUa := DU.FloatArray() DU2a := DU2.FloatArray() Ba := B.FloatArray() trans := linalg.ParamString(pars.Trans) info := dgttrs(trans, ind.N, ind.Nrhs, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a, ipiv, Ba[ind.OffsetB:], ind.LDb) if info != 0 { return errors.New("dgttrs call error") } return nil }
/* Solves a real or complex set of linear equations with a banded coefficient matrix, given the LU factorization computed by gbtrf() or gbsv(). Gbtrs(A, B, ipiv, kl, trans=PNoTrans, n=A.Cols, ku=A.Rows-2*kl-1, nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0) PURPOSE Solves linear equations A*X = B, if trans is PNoTrans A^T*X = B, if trans is PTrans A^H*X = B, if trans is PConjTrans On entry, A and ipiv contain the LU factorization of an n by n band matrix A as computed by Getrf() or Gbsv(). On exit B is replaced by the solution X. ARGUMENTS A float or complex matrix B float or complex matrix. Must have the same type as A. ipiv int vector kl nonnegative integer OPTIONS trans PNoTrans, PTrans or PConjTrans n nonnegative integer. If negative, the default value is used. ku nonnegative integer. If negative, the default value is used. nrhs nonnegative integer. If negative, the default value is used. ldA positive integer, ldA >= 2*kl+ku+1. If zero, the default value is used. ldB positive integer, ldB >= max(1,n). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer; */ func Gbtrs(A, B matrix.Matrix, ipiv []int32, KL int, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) //err = lapack_check(ind, fgbtrs, A, B, ipiv, pars) ind.Kl = KL if ind.Kl < 0 { return errors.New("invalid kl") } if ind.N < 0 { ind.N = A.Rows() } if ind.Nrhs < 0 { ind.Nrhs = A.Cols() } if ind.N == 0 || ind.Nrhs == 0 { return nil } if ind.Ku < 0 { ind.Ku = A.Rows() - 2*ind.Kl - 1 } if ind.Ku < 0 { return errors.New("invalid ku") } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDa < 2*ind.Kl+ind.Ku+1 { return errors.New("lda") } if ind.OffsetA < 0 { return errors.New("offsetA") } sizeA := A.NumElements() if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 { return errors.New("sizeA") } if ind.LDb == 0 { ind.LDb = max(1, B.Rows()) } if ind.OffsetB < 0 { return errors.New("offsetB") } sizeB := B.NumElements() if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N { return errors.New("sizeB") } if ipiv != nil && len(ipiv) < ind.N { return errors.New("size ipiv") } info := -1 switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ba := B.FloatArray() trans := linalg.ParamString(pars.Trans) info = dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb) case *matrix.ComplexMatrix: return errors.New("Gbtrs for complex not yet implemented") } if info != 0 { return errors.New("gbtrs call error") } return nil }
/* Product with a real orthogonal matrix. Ormqr(A, tau, C, side='L', trans='N', m=C.Rows, n=C.Cols, k=len(tau), ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetC=0) PURPOSE Computes C := Q*C if side = PLeft and trans = PNoTrans C := Q^T*C if side = PLeft and trans = PTrans C := C*Q if side = PRight and trans = PNoTrans C := C*Q^T if side = PRight and trans = PTrans C is m by n and Q is a square orthogonal matrix computed by geqrf. Q is defined as a product of k elementary reflectors, stored as the first k columns of A and the first k entries of tau. ARGUMENTS A float matrix tau float matrix of length at least k C float matrix OPTIONS side PLeft or PRight trans PNoTrans or PTrans m integer. If negative, the default value is used. n integer. If negative, the default value is used. k integer. k <= m if side = PRight and k <= n if side = PLeft. If negative, the default value is used. ldA nonnegative integer. ldA >= max(1,m) if side = PLeft and ldA >= max(1,n) if side = PRight. If zero, the default value is used. ldC nonnegative integer. ldC >= max(1,m). If zero, the default value is used. offsetA nonnegative integer offsetB nonnegative integer */ func Ormqf(A, tau, C matrix.Matrix, opts ...linalg.Option) error { pars, err := linalg.GetParameters(opts...) if err != nil { return err } ind := linalg.GetIndexOpts(opts...) if ind.N < 0 { ind.N = C.Cols() } if ind.M < 0 { ind.M = C.Rows() } if ind.K < 0 { ind.K = tau.NumElements() } if ind.N == 0 || ind.M == 0 || ind.K == 0 { return nil } if ind.LDa == 0 { ind.LDa = max(1, A.Rows()) } if ind.LDc == 0 { ind.LDc = max(1, C.Rows()) } switch pars.Side { case linalg.PLeft: if ind.K > ind.M { errors.New("K") } if ind.LDa < max(1, ind.M) { return errors.New("lda") } case linalg.PRight: if ind.K > ind.N { errors.New("K") } if ind.LDa < max(1, ind.N) { return errors.New("lda") } } if ind.OffsetA < 0 { return errors.New("offsetA") } if A.NumElements() < ind.OffsetA+ind.K*ind.LDa { return errors.New("sizeA") } if ind.OffsetC < 0 { return errors.New("offsetC") } if C.NumElements() < ind.OffsetC+(ind.N-1)*ind.LDa+ind.M { return errors.New("sizeC") } if tau.NumElements() < ind.K { return errors.New("sizeTau") } if !matrix.EqualTypes(A, C, tau) { return errors.New("not same type") } info := -1 side := linalg.ParamString(pars.Side) trans := linalg.ParamString(pars.Trans) switch A.(type) { case *matrix.FloatMatrix: Aa := A.FloatArray() Ca := C.FloatArray() taua := tau.FloatArray() info = dormqr(side, trans, ind.M, ind.N, ind.K, Aa[ind.OffsetA:], ind.LDa, taua, Ca[ind.OffsetC:], ind.LDc) case *matrix.ComplexMatrix: return errors.New("ComplexMatrx: not implemented yet") } if info != 0 { return errors.New("Ormqr failed") } return nil }