/* * Reduce upper triangular matrix to tridiagonal. * * Elementary reflectors Q = H(n-1)...H(2)H(1) are stored on upper * triangular part of A. Reflector H(n-1) saved at column A(n) and * scalar multiplier to tau[n-1]. If parameter `tail` is true then * this function is used to reduce tail part of partially reduced * matrix and tau-vector partitioning is starting from last position. */ func unblkReduceTridiagUpper(A, tauq, W *cmat.FloatMatrix, tail bool) { var ATL, ABR cmat.FloatMatrix var A00, a01, a11, A22 cmat.FloatMatrix var tqT, tqB, tq0, tauq1, tq2 cmat.FloatMatrix var y21 cmat.FloatMatrix var v0 float64 toff := 1 if tail { toff = 0 } util.Partition2x2( &ATL, nil, nil, &ABR, A, 0, 0, util.PBOTTOMRIGHT) util.Partition2x1( &tqT, &tqB, tauq, toff, util.PBOTTOM) for n(&ATL) > 0 { util.Repartition2x2to3x3(&ATL, &A00, &a01, nil, nil, &a11, nil, nil, nil, &A22, A, 1, util.PTOPLEFT) util.Repartition2x1to3x1(&tqT, &tq0, &tauq1, &tq2, tauq, 1, util.PTOP) // set temp vectors for this round y21.SetBuf(n(&A00), 1, n(&A00), W.Data()) // ------------------------------------------------------ // Compute householder to zero super-diagonal entries computeHouseholderRev(&a01, &tauq1) tauqv := tauq1.Get(0, 0) // set superdiagonal to unit v0 = a01.Get(-1, 0) a01.Set(-1, 0, 1.0) // y21 := A22*a12t blasd.MVMultSym(&y21, &A00, &a01, tauqv, 0.0, gomas.UPPER) // beta := tauq*a12t*y21 beta := tauqv * blasd.Dot(&a01, &y21) // y21 := y21 - 0.5*beta*a125 blasd.Axpy(&y21, &a01, -0.5*beta) // A22 := A22 - a12t*y21.T - y21*a12.T blasd.MVUpdate2Sym(&A00, &a01, &y21, -1.0, gomas.UPPER) // restore superdiagonal value a01.Set(-1, 0, v0) // ------------------------------------------------------ util.Continue3x3to2x2( &ATL, nil, nil, &ABR, &A00, &a11, &A22, A, util.PTOPLEFT) util.Continue3x1to2x1( &tqT, &tqB, &tq0, &tauq1, tauq, util.PTOP) } }
func TestDSyr2(t *testing.T) { const N = 911 A := cmat.NewMatrix(N, N) X := cmat.NewMatrix(N, 1) Y := cmat.NewMatrix(N, 1) B := cmat.NewMatrix(N, N) ones := cmat.NewFloatConstSource(1.0) twos := cmat.NewFloatConstSource(2.0) zeromean := cmat.NewFloatUniformSource(0.5, 2.0) A.SetFrom(zeromean, cmat.LOWER) X.SetFrom(ones) Y.SetFrom(twos) B.Copy(A) // B = A*B blasd.MVUpdate(B, X, Y, 1.0) blasd.MVUpdate(B, Y, X, 1.0) cmat.TriL(B, cmat.NONE) blasd.MVUpdate2Sym(A, X, Y, 1.0, gomas.LOWER) ok := B.AllClose(A) if N < 10 { t.Logf("A:\n%v\n", A) t.Logf("B:\n%v\n", B) } t.Logf("MVUpdate2Sym(A, X, Y, L) == TriL(MVUpdate(A, X, Y);MVUpdate(A, Y, X)) : %v\n", ok) A.SetFrom(zeromean, cmat.UPPER) cmat.TriU(A, cmat.NONE) B.Copy(A) blasd.MVUpdate(B, X, Y, 1.0) blasd.MVUpdate(B, Y, X, 1.0) cmat.TriU(B, cmat.NONE) blasd.MVUpdate2Sym(A, X, Y, 1.0, gomas.UPPER) ok = B.AllClose(A) if N < 10 { t.Logf("A:\n%v\n", A) t.Logf("B:\n%v\n", B) } t.Logf("MVUpdate2Sym(A, X, Y, U) == TriU(MVUpdate(A, X, Y);MVUpdate(A, Y, X)) : %v\n", ok) }
/* * Tridiagonal reduction of LOWER triangular symmetric matrix, zero elements below 1st * subdiagonal: * * A = (1 - tau*u*u.t)*A*(1 - tau*u*u.T) * = (I - tau*( 0 0 )) (a11 a12) (I - tau*( 0 0 )) * ( ( 0 u*u.t)) (a21 A22) ( ( 0 u*u.t)) * * a11, a12, a21 not affected * * from LEFT: * A22 = A22 - tau*u*u.T*A22 * from RIGHT: * A22 = A22 - tau*A22*u.u.T * * LEFT and RIGHT: * A22 = A22 - tau*u*u.T*A22 - tau*(A22 - tau*u*u.T*A22)*u*u.T * = A22 - tau*u*u.T*A22 - tau*A22*u*u.T + tau*tau*u*u.T*A22*u*u.T * [x = tau*A22*u (vector)] (SYMV) * A22 = A22 - u*x.T - x*u.T + tau*u*u.T*x*u.T * [beta = tau*u.T*x (scalar)] (DOT) * = A22 - u*x.T - x*u.T + beta*u*u.T * = A22 - u*(x - 0.5*beta*u).T - (x - 0.5*beta*u)*u.T * [w = x - 0.5*beta*u] (AXPY) * = A22 - u*w.T - w*u.T (SYR2) * * Result of reduction for N = 5: * ( d . . . . ) * ( e d . . . ) * ( v1 e d . . ) * ( v1 v2 e d . ) * ( v1 v2 v3 e d ) */ func unblkReduceTridiagLower(A, tauq, W *cmat.FloatMatrix) { var ATL, ABR cmat.FloatMatrix var A00, a11, a21, A22 cmat.FloatMatrix var tqT, tqB, tq0, tauq1, tq2 cmat.FloatMatrix var y21 cmat.FloatMatrix var v0 float64 util.Partition2x2( &ATL, nil, nil, &ABR, A, 0, 0, util.PTOPLEFT) util.Partition2x1( &tqT, &tqB, tauq, 0, util.PTOP) for m(&ABR) > 0 && n(&ABR) > 0 { util.Repartition2x2to3x3(&ATL, &A00, nil, nil, nil, &a11, nil, nil, &a21, &A22, A, 1, util.PBOTTOMRIGHT) util.Repartition2x1to3x1(&tqT, &tq0, &tauq1, &tq2, tauq, 1, util.PBOTTOM) // set temp vectors for this round y21.SetBuf(n(&A22), 1, n(&A22), W.Data()) // ------------------------------------------------------ // Compute householder to zero subdiagonal entries computeHouseholderVec(&a21, &tauq1) tauqv := tauq1.Get(0, 0) // set subdiagonal to unit v0 = a21.Get(0, 0) a21.Set(0, 0, 1.0) // y21 := tauq*A22*a21 blasd.MVMultSym(&y21, &A22, &a21, tauqv, 0.0, gomas.LOWER) // beta := tauq*a21.T*y21 beta := tauqv * blasd.Dot(&a21, &y21) // y21 := y21 - 0.5*beta*a21 blasd.Axpy(&y21, &a21, -0.5*beta) // A22 := A22 - a21*y21.T - y21*a21.T blasd.MVUpdate2Sym(&A22, &a21, &y21, -1.0, gomas.LOWER) // restore subdiagonal a21.Set(0, 0, v0) // ------------------------------------------------------ util.Continue3x3to2x2( &ATL, nil, nil, &ABR, &A00, &a11, &A22, A, util.PBOTTOMRIGHT) util.Continue3x1to2x1( &tqT, &tqB, &tq0, &tauq1, tauq, util.PBOTTOM) } }