// ResolveUnspecifiedAddress expands an unspecified ip addresses (/ip4/0.0.0.0, /ip6/::) to // use the known local interfaces. If ifaceAddr is nil, we request interface addresses // from the network stack. (this is so you can provide a cached value if resolving many addrs) func ResolveUnspecifiedAddress(resolve ma.Multiaddr, ifaceAddrs []ma.Multiaddr) ([]ma.Multiaddr, error) { // split address into its components split := ma.Split(resolve) // if first component (ip) is not unspecified, use it as is. if !manet.IsIPUnspecified(split[0]) { return []ma.Multiaddr{resolve}, nil } out := make([]ma.Multiaddr, 0, len(ifaceAddrs)) for _, ia := range ifaceAddrs { // must match the first protocol to be resolve. if ia.Protocols()[0].Code != resolve.Protocols()[0].Code { continue } split[0] = ia joined := ma.Join(split...) out = append(out, joined) log.Debug("adding resolved addr:", resolve, joined, out) } if len(out) < 1 { return nil, fmt.Errorf("failed to resolve: %s", resolve) } return out, nil }
// DialArgs is a convenience function returning arguments for use in net.Dial func DialArgs(m ma.Multiaddr) (string, string, error) { if !IsThinWaist(m) { return "", "", fmt.Errorf("%s is not a 'thin waist' address", m) } str := m.String() parts := strings.Split(str, "/")[1:] if len(parts) == 2 { // only IP return parts[0], parts[1], nil } network := parts[2] if parts[2] == "udp" && len(parts) > 4 && parts[4] == "utp" { network = parts[4] } var host string switch parts[0] { case "ip4": network = network + "4" host = strings.Join([]string{parts[1], parts[3]}, ":") case "ip6": network = network + "6" host = fmt.Sprintf("[%s]:%s", parts[1], parts[3]) } return network, host, nil }
func (t *TcpTransport) Dialer(laddr ma.Multiaddr, opts ...DialOpt) (Dialer, error) { t.dlock.Lock() defer t.dlock.Unlock() s := laddr.String() d, found := t.dialers[s] if found { return d, nil } var base manet.Dialer var doReuse bool for _, o := range opts { switch o := o.(type) { case TimeoutOpt: base.Timeout = time.Duration(o) case ReuseportOpt: doReuse = bool(o) default: return nil, fmt.Errorf("unrecognized option: %#v", o) } } tcpd, err := t.newTcpDialer(base, laddr, doReuse) if err != nil { return nil, err } t.dialers[s] = tcpd return tcpd, nil }
func (oas *ObservedAddrSet) Add(addr ma.Multiaddr, observer ma.Multiaddr) { oas.Lock() defer oas.Unlock() // for zero-value. if oas.addrs == nil { oas.addrs = make(map[string]*ObservedAddr) oas.ttl = peer.OwnObservedAddrTTL } s := addr.String() oa, found := oas.addrs[s] // first time seeing address. if !found { oa = &ObservedAddr{ Addr: addr, SeenBy: make(map[string]struct{}), } oas.addrs[s] = oa } // mark the observer oa.SeenBy[observerGroup(observer)] = struct{}{} oa.LastSeen = time.Now() }
// AddrMatch returns the Multiaddrs that match the protocol stack on addr func AddrMatch(match ma.Multiaddr, addrs []ma.Multiaddr) []ma.Multiaddr { // we should match transports entirely. p1s := match.Protocols() out := make([]ma.Multiaddr, 0, len(addrs)) for _, a := range addrs { p2s := a.Protocols() if len(p1s) != len(p2s) { continue } match := true for i, p2 := range p2s { if p1s[i].Code != p2.Code { match = false break } } if match { out = append(out, a) } } return out }
// AddrInList returns whether or not an address is part of a list. // this is useful to check if NAT is happening (or other bugs?) func AddrInList(addr ma.Multiaddr, list []ma.Multiaddr) bool { for _, addr2 := range list { if addr.Equal(addr2) { return true } } return false }
func addrInAddrs(a ma.Multiaddr, as []ma.Multiaddr) bool { for _, b := range as { if a.Equal(b) { return true } } return false }
// CheckNATWarning checks if our observed addresses differ. if so, // informs the user that certain things might not work yet func CheckNATWarning(observed, expected ma.Multiaddr, listen []ma.Multiaddr) { if observed.Equal(expected) { return } if !AddrInList(observed, listen) { // probably a nat log.Warningf(natWarning, observed, listen) } }
// rawConnDial dials the underlying net.Conn + manet.Conns func (d *Dialer) rawConnDial(ctx context.Context, raddr ma.Multiaddr, remote peer.ID) (transport.Conn, error) { if strings.HasPrefix(raddr.String(), "/ip4/0.0.0.0") { log.Event(ctx, "connDialZeroAddr", lgbl.Dial("conn", d.LocalPeer, remote, nil, raddr)) return nil, fmt.Errorf("Attempted to connect to zero address: %s", raddr) } sd := d.subDialerForAddr(raddr) if sd == nil { return nil, fmt.Errorf("no dialer for %s", raddr) } return sd.Dial(raddr) }
// rawConnDial dials the underlying net.Conn + manet.Conns func (d *Dialer) rawConnDial(ctx context.Context, raddr ma.Multiaddr, remote peer.ID) (manet.Conn, error) { // before doing anything, check we're going to be able to dial. // we may not support the given address. if _, _, err := manet.DialArgs(raddr); err != nil { return nil, err } if strings.HasPrefix(raddr.String(), "/ip4/0.0.0.0") { log.Event(ctx, "connDialZeroAddr", lgbl.Dial("conn", d.LocalPeer, remote, nil, raddr)) return nil, fmt.Errorf("Attempted to connect to zero address: %s", raddr) } // get local addr to use. laddr := pickLocalAddr(d.LocalAddrs, raddr) logdial := lgbl.Dial("conn", d.LocalPeer, remote, laddr, raddr) defer log.EventBegin(ctx, "connDialRawConn", logdial).Done() // make a copy of the manet.Dialer, we may need to change its timeout. madialer := d.Dialer if laddr != nil && reuseportIsAvailable() { // we're perhaps going to dial twice. half the timeout, so we can afford to. // otherwise our context would expire right after the first dial. madialer.Dialer.Timeout = (madialer.Dialer.Timeout / 2) // dial using reuseport.Dialer, because we're probably reusing addrs. // this is optimistic, as the reuseDial may fail to bind the port. rpev := log.EventBegin(ctx, "connDialReusePort", logdial) if nconn, retry, reuseErr := reuseDial(madialer.Dialer, laddr, raddr); reuseErr == nil { // if it worked, wrap the raw net.Conn with our manet.Conn logdial["reuseport"] = "success" rpev.Done() return manet.WrapNetConn(nconn) } else if !retry { // reuseDial is sure this is a legitimate dial failure, not a reuseport failure. logdial["reuseport"] = "failure" logdial["error"] = reuseErr rpev.Done() return nil, reuseErr } else { // this is a failure to reuse port. log it. logdial["reuseport"] = "retry" logdial["error"] = reuseErr rpev.Done() } } defer log.EventBegin(ctx, "connDialManet", logdial).Done() return madialer.Dial(raddr) }
// IsIPLoopback returns whether a Multiaddr is a "Loopback" IP address // This means either /ip4/127.0.0.1 or /ip6/::1 // TODO: differentiate IsIPLoopback and OverIPLoopback func IsIPLoopback(m ma.Multiaddr) bool { b := m.Bytes() // /ip4/127 prefix (_entire_ /8 is loopback...) if bytes.HasPrefix(b, []byte{ma.P_IP4, 127}) { return true } // /ip6/::1 if IP6Loopback.Equal(m) || IP6LinkLocalLoopback.Equal(m) { return true } return false }
func addPortMapping(nmgr *natManager, intaddr ma.Multiaddr) { nat := nmgr.NAT() if nat == nil { panic("natManager addPortMapping called without a nat.") } // first, check if the port mapping already exists. for _, mapping := range nat.Mappings() { if mapping.InternalAddr().Equal(intaddr) { return // it exists! return. } } ctx := context.TODO() lm := make(lgbl.DeferredMap) lm["internalAddr"] = func() interface{} { return intaddr.String() } defer log.EventBegin(ctx, "natMgrAddPortMappingWait", lm).Done() select { case <-nmgr.proc.Closing(): lm["outcome"] = "cancelled" return // no use. case <-nmgr.ready: // wait until it's ready. } // actually start the port map (sub-event because waiting may take a while) defer log.EventBegin(ctx, "natMgrAddPortMapping", lm).Done() // get the nat m, err := nat.NewMapping(intaddr) if err != nil { lm["outcome"] = "failure" lm["error"] = err return } extaddr, err := m.ExternalAddr() if err != nil { lm["outcome"] = "failure" lm["error"] = err return } lm["outcome"] = "success" lm["externalAddr"] = func() interface{} { return extaddr.String() } log.Infof("established nat port mapping: %s <--> %s", intaddr, extaddr) }
func (t *UtpTransport) Listen(laddr ma.Multiaddr) (Listener, error) { t.sockLock.Lock() defer t.sockLock.Unlock() s, ok := t.sockets[laddr.String()] if ok { return s, nil } ns, err := t.newConn(laddr) if err != nil { return nil, err } t.sockets[laddr.String()] = ns return ns, nil }
func (t *UtpTransport) Dialer(laddr ma.Multiaddr, opts ...DialOpt) (Dialer, error) { t.sockLock.Lock() defer t.sockLock.Unlock() s, ok := t.sockets[laddr.String()] if ok { return s, nil } ns, err := t.newConn(laddr, opts...) if err != nil { return nil, err } t.sockets[laddr.String()] = ns return ns, nil }
// MultiaddrProtocolsMatch returns whether two multiaddrs match in protocol stacks. func MultiaddrProtocolsMatch(a, b ma.Multiaddr) bool { ap := a.Protocols() bp := b.Protocols() if len(ap) != len(bp) { return false } for i, api := range ap { if api.Code != bp[i].Code { return false } } return true }
// Dial metadata is metadata for dial events func Dial(sys string, lid, rid peer.ID, laddr, raddr ma.Multiaddr) DeferredMap { m := DeferredMap{} m["subsystem"] = sys if lid != "" { m["localPeer"] = func() interface{} { return lid.Pretty() } } if laddr != nil { m["localAddr"] = func() interface{} { return laddr.String() } } if rid != "" { m["remotePeer"] = func() interface{} { return rid.Pretty() } } if raddr != nil { m["remoteAddr"] = func() interface{} { return raddr.String() } } return m }
// NewMapping attemps to construct a mapping on protocol and internal port // It will also periodically renew the mapping until the returned Mapping // -- or its parent NAT -- is Closed. // // May not succeed, and mappings may change over time; // NAT devices may not respect our port requests, and even lie. // Clients should not store the mapped results, but rather always // poll our object for the latest mappings. func (nat *NAT) NewMapping(maddr ma.Multiaddr) (Mapping, error) { if nat == nil { return nil, fmt.Errorf("no nat available") } network, addr, err := manet.DialArgs(maddr) if err != nil { return nil, fmt.Errorf("DialArgs failed on addr:", maddr.String()) } switch network { case "tcp", "tcp4", "tcp6": network = "tcp" case "udp", "udp4", "udp6": network = "udp" default: return nil, fmt.Errorf("transport not supported by NAT: %s", network) } intports := strings.Split(addr, ":")[1] intport, err := strconv.Atoi(intports) if err != nil { return nil, err } m := &mapping{ nat: nat, proto: network, intport: intport, intaddr: maddr, } m.proc = goprocess.WithTeardown(func() error { nat.rmMapping(m) return nil }) nat.addMapping(m) m.proc.AddChild(periodic.Every(MappingDuration/3, func(worker goprocess.Process) { nat.establishMapping(m) })) // do it once synchronously, so first mapping is done right away, and before exiting, // allowing users -- in the optimistic case -- to use results right after. nat.establishMapping(m) return m, nil }
func (t *TcpTransport) Listen(laddr ma.Multiaddr) (Listener, error) { t.llock.Lock() defer t.llock.Unlock() s := laddr.String() l, found := t.listeners[s] if found { return l, nil } list, err := manetListen(laddr) if err != nil { return nil, err } tlist := &tcpListener{ list: list, transport: t, } t.listeners[s] = tlist return tlist, nil }
func outfmt(m ma.Multiaddr) string { switch format { case "string": return m.String() case "slice": return fmt.Sprintf("%v", m.Bytes()) case "bytes": return string(m.Bytes()) case "hex": return "0x" + hex.EncodeToString(m.Bytes()) } die("error: invalid format", format) return "" }
// AddrUsable returns whether our network can use this addr. // We only use the transports in SupportedTransportStrings, // and we do not link local addresses. Loopback is ok // as we need to be able to connect to multiple ipfs nodes // in the same machine. func AddrUsable(a ma.Multiaddr, partial bool) bool { if a == nil { return false } if !AddrOverNonLocalIP(a) { return false } // test the address protocol list is in SupportedTransportProtocols matches := func(supported, test []ma.Protocol) bool { if len(test) > len(supported) { return false } // when partial, it's ok if test < supported. if !partial && len(supported) != len(test) { return false } for i := range test { if supported[i].Code != test[i].Code { return false } } return true } transport := a.Protocols() for _, supported := range SupportedTransportProtocols { if matches(supported, transport) { return true } } return false }
// IsThinWaist returns whether a Multiaddr starts with "Thin Waist" Protocols. // This means: /{IP4, IP6}[/{TCP, UDP}] func IsThinWaist(m ma.Multiaddr) bool { p := m.Protocols() // nothing? not even a waist. if len(p) == 0 { return false } if p[0].Code != ma.P_IP4 && p[0].Code != ma.P_IP6 { return false } // only IP? still counts. if len(p) == 1 { return true } switch p[1].Code { case ma.P_TCP, ma.P_UDP, ma.P_IP4, ma.P_IP6: return true default: return false } }
// IP6 Link Local addresses are non routable. The prefix is technically // fe80::/10, but we test fe80::/16 for simplicity (no need to mask). // So far, no hardware interfaces exist long enough to use those 2 bits. // Send a PR if there is. func IsIP6LinkLocal(m ma.Multiaddr) bool { return bytes.HasPrefix(m.Bytes(), []byte{ma.P_IP6, 0xfe, 0x80}) }
func IsUtpMultiaddr(a ma.Multiaddr) bool { p := a.Protocols() return len(p) == 3 && p[2].Name == "utp" }
func isTCPMultiaddr(a ma.Multiaddr) bool { p := a.Protocols() return len(p) == 2 && (p[0].Name == "ip4" || p[0].Name == "ip6") && p[1].Name == "tcp" }
func (s *UtpSocket) Matches(a ma.Multiaddr) bool { p := a.Protocols() return len(p) == 3 && p[2].Name == "utp" }
func (d *UtpTransport) Matches(a ma.Multiaddr) bool { p := a.Protocols() return len(p) == 3 && p[2].Name == "utp" }