func exp2f4(x x86.M128) x86.M128 { var ipart x86.M128i var fpart, expipart, expfpart x86.M128 x = sse.MinPs(x, sse.Set1Ps(129)) x = sse.MaxPs(x, sse.Set1Ps(-126.99999)) /* ipart = int(x - 0.5) */ ipart = sse2.CvtpsEpi32(sse.SubPs(x, sse.Set1Ps(0.5))) /* fpart = x - ipart */ fpart = sse.SubPs(x, sse2.Cvtepi32Ps(ipart)) /* expipart = (float) (1 << ipart) */ expipart = sse2.Castsi128Ps(sse2.SlliEpi32(sse2.AddEpi32(ipart, sse2.Set1Epi32(127)), 23)) /* minimax polynomial fit of 2**x, in range [-0.5, 0.5[ */ if EXP_poly_DEGREE == 5 { expfpart = poly5(fpart, exp_p5_0, exp_p5_1, exp_p5_2, exp_p5_3, exp_p5_4, exp_p5_5) } else if EXP_poly_DEGREE == 4 { expfpart = poly4(fpart, exp_p4_0, exp_p4_1, exp_p4_2, exp_p4_3, exp_p4_4) } else if EXP_poly_DEGREE == 3 { expfpart = poly3(fpart, exp_p3_0, exp_p3_1, exp_p3_2, exp_p3_3) } else if EXP_poly_DEGREE == 2 { expfpart = poly2(fpart, exp_p2_0, exp_p2_1, exp_p2_2) } else { panic("invalid poly degree") } return sse.MulPs(expipart, expfpart) }
func log2f4(x x86.M128) x86.M128 { exp := sse2.Set1Epi32(exp_mask) mant := sse2.Set1Epi32(mantissa_mask) one := sse.Set1Ps(1.0) i := sse2.CastpsSi128(x) e := sse2.Cvtepi32Ps(sse2.SubEpi32(sse2.SrliEpi32(sse2.AndSi128(i, exp), 23), sse2.Set1Epi32(127))) m := sse.OrPs(sse2.Castsi128Ps(sse2.AndSi128(i, mant)), one) var p x86.M128 /* Minimax polynomial fit of log2(x)/(x - 1), for x in range [1, 2[ */ if LOG_poly_DEGREE == 6 { p = poly5(m, log_p5_0, log_p5_1, log_p5_2, log_p5_3, log_p5_4, log_p5_5) } else if LOG_poly_DEGREE == 5 { p = poly4(m, log_p4_0, log_p4_1, log_p4_2, log_p4_3, log_p4_4) } else if LOG_poly_DEGREE == 4 { p = poly3(m, log_p3_0, log_p3_1, log_p3_2, log_p3_3) } else if LOG_poly_DEGREE == 3 { p = poly2(m, log_p2_0, log_p2_1, log_p2_2) } else { panic("unsupported poly degree") } /* This effectively increases the polynomial degree by one, but ensures that log2(1) == 0*/ p = sse.MulPs(p, sse.SubPs(m, one)) return sse.AddPs(p, e) }