func main() { // create file storing ks and vard f, err := os.Create(fname + ".csv") if err != nil { panic(err) } defer f.Close() ksarray := []float64{} // store ks vdarray := []float64{} // store VarD ngarray := []float64{} // store generation number // do evolution for i := 0; i < ngen; i++ { pop.Evolve() // we make 10 samples and average ksmean := desc.NewMean() vdmean := desc.NewMean() for j := 0; j < sampleTime; j++ { sample := fwd.Sample(pop.Genomes, sampleSize) dmatrix := fwd.GenerateDistanceMatrix(sample) cmatrix := covs.NewCMatrix(sampleSize, pop.Length, dmatrix) ks, vard := cmatrix.D() ksmean.Increment(ks) vdmean.Increment(vard) } // write to csv f.WriteString(fmt.Sprintf("%d,%g,%g\n", pop.NumOfGen, ksmean.GetResult(), vdmean.GetResult())) if (i+1)%1000 == 0 { fmt.Println("Generation: ", pop.NumOfGen, ksmean.GetResult(), vdmean.GetResult()) } // store array for draw ksarray = append(ksarray, ksmean.GetResult()) vdarray = append(vdarray, vdmean.GetResult()) ngarray = append(ngarray, float64(pop.NumOfGen)) } // draw svger := render.NewSVG(fname, 1, 2, 800, 200) pl := chart.ScatterChart{Title: "KS"} pl.AddDataPair("KS", ngarray, ksarray, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) pl = chart.ScatterChart{Title: "VarD"} pl.AddDataPair("VarD", ngarray, vdarray, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) svger.Close() // save population jf, err := os.Create(fname + ".json") if err != nil { panic(err) } defer jf.Close() b, err := json.Marshal(pop) if err != nil { panic(err) } jf.Write(b) }
// calculate the KS and VarD. func (cm *CMatrix) D() (m float64, v float64) { mean := desc.NewMean() variance := desc.NewVariance() for i := 0; i < len(cm.Matrix); i++ { d := float64(len(cm.Matrix[i])) / float64(cm.Length) mean.Increment(d) variance.Increment(d) } m = mean.GetResult() v = variance.GetResult() return }
// the converge of KS equalibrium. func main() { ksarray := []float64{} // store ks vdarray := []float64{} // store VarD ngarray := []float64{} // store generation number // do evolution for i := 0; i < ngen; i++ { pop.Evolve() // select 10 samples and averge mean := desc.NewMean() vmean := desc.NewMean() ch := make(chan dResult) num := 10 for j := 0; j < num; j++ { sample := fwd1.Sample(pop.Genomes, sampleSize) go calculateD(sample, pop.Length, ch) } for j := 0; j < num; j++ { dr := <-ch mean.Increment(dr.ks) vmean.Increment(dr.vard) } ksarray = append(ksarray, mean.GetResult()) vdarray = append(vdarray, vmean.GetResult()) ngarray = append(ngarray, float64(pop.NumOfGen)) } // draw svger := render.NewSVG(fname, 1, 2, 800, 200) pl := chart.ScatterChart{Title: "KS"} pl.AddDataPair("KS", ngarray, ksarray, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) pl = chart.ScatterChart{Title: "VarD"} pl.AddDataPair("VarD", ngarray, vdarray, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) svger.Close() }
func main() { // ks file ksfilestr := dir + "/" + prex + "_ks.txt" ksfile, err := os.Create(ksfilestr) if err != nil { log.Fatalf("Can not create file: %s, %v", ksfilestr, err) } defer ksfile.Close() ksMean := desc.NewMean() ksVar := desc.NewVarianceWithBiasCorrection() vardMean := desc.NewMean() vardVar := desc.NewVarianceWithBiasCorrection() scovsMeanArray := make([]*desc.Mean, maxL) scovsVarArray := make([]*desc.Variance, maxL) rcovsMeanArray := make([]*desc.Mean, maxL) rcovsVarArray := make([]*desc.Variance, maxL) xyPLMeanArray := make([]*desc.Mean, maxL) xyPLVarArray := make([]*desc.Variance, maxL) xsysPLMeanArray := make([]*desc.Mean, maxL) xsysPLVarArray := make([]*desc.Variance, maxL) smXYPLMeanArray := make([]*desc.Mean, maxL) smXYPLVarArray := make([]*desc.Variance, maxL) for i := 0; i < maxL; i++ { scovsMeanArray[i] = desc.NewMean() scovsVarArray[i] = desc.NewVarianceWithBiasCorrection() rcovsMeanArray[i] = desc.NewMean() rcovsVarArray[i] = desc.NewVarianceWithBiasCorrection() xyPLMeanArray[i] = desc.NewMean() xyPLVarArray[i] = desc.NewVarianceWithBiasCorrection() xsysPLMeanArray[i] = desc.NewMean() xsysPLVarArray[i] = desc.NewVarianceWithBiasCorrection() smXYPLMeanArray[i] = desc.NewMean() smXYPLVarArray[i] = desc.NewVarianceWithBiasCorrection() } stepNum := etime / stepSize for i := 0; i < stepNum; i++ { // simulate pop.Evolve(stepSize) // create distance matrix dmatrix := pop.DistanceMatrix(sampleSize) c := covs.NewCMatrix(dmatrix, sampleSize, pop.Length) // calculate ks ks := c.CalculateKS() vard := c.CalculateVarD() ksfile.WriteString(fmt.Sprintf("%d\t%g\t%g\n", pop.Time, ks, vard)) ksMean.Increment(ks) ksVar.Increment(ks) vardMean.Increment(vard) vardVar.Increment(vard) log.Printf("KsMean: %g, KsVar: %g, VardMean: %g, VardVar: %g\n", ksMean.GetResult(), ksVar.GetResult(), vardMean.GetResult(), vardVar.GetResult()) // calculate covs scovs, rcovs, xyPL, xsysPL, smXYPL := c.CalculateCovs(maxL) for j := 0; j < maxL; j++ { scovsMeanArray[j].Increment(scovs[j]) scovsVarArray[j].Increment(scovs[j]) rcovsMeanArray[j].Increment(rcovs[j]) rcovsVarArray[j].Increment(rcovs[j]) xyPLMeanArray[j].Increment(xyPL[j]) xyPLVarArray[j].Increment(xyPL[j]) xsysPLMeanArray[j].Increment(xsysPL[j]) xsysPLVarArray[j].Increment(xsysPL[j]) smXYPLMeanArray[j].Increment(smXYPL[j]) smXYPLVarArray[j].Increment(smXYPL[j]) } svger := render.NewSVG(dir+"/"+prex+"_covs", 1, 5, 800, 200) scovMeans := make([]float64, maxL-1) rcovMeans := make([]float64, maxL-1) xyPLMeans := make([]float64, maxL-1) xsysPLMeans := make([]float64, maxL-1) smXYPLMeans := make([]float64, maxL-1) xs := make([]float64, maxL-1) for j := 1; j < maxL; j++ { xs[j-1] = float64(j) scovMeans[j-1] = scovsMeanArray[j].GetResult() rcovMeans[j-1] = rcovsMeanArray[j].GetResult() xyPLMeans[j-1] = xyPLMeanArray[j].GetResult() xsysPLMeans[j-1] = xsysPLMeanArray[j].GetResult() smXYPLMeans[j-1] = smXYPLMeanArray[j].GetResult() } pl := chart.ScatterChart{Title: "scovs"} pl.AddDataPair("struc covs", xs, scovMeans, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) pl = chart.ScatterChart{Title: "rcovs"} pl.AddDataPair("rate covs", xs, rcovMeans, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) pl = chart.ScatterChart{Title: "xyPL"} pl.AddDataPair("xyPL", xs, xyPLMeans, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) pl = chart.ScatterChart{Title: "xsysPL"} pl.AddDataPair("xsysPL", xs, xsysPLMeans, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) pl = chart.ScatterChart{Title: "smXYPL"} pl.AddDataPair("smXYPL", xs, smXYPLMeans, chart.PlotStyleLines, chart.Style{Symbol: '+', SymbolColor: "#0000ff", LineStyle: chart.SolidLine}) svger.Plot(&pl) svger.Close() // write to file covsfilestr := dir + "/" + prex + "_covs.txt" covsfile, err := os.Create(covsfilestr) if err != nil { log.Fatalf("Can not create file: %s, %v", covsfilestr, err) } for j := 0; j < maxL; j++ { covsfile.WriteString( fmt.Sprintf("%d\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\n", j, scovsMeanArray[j].GetResult(), scovsVarArray[j].GetResult(), rcovsMeanArray[j].GetResult(), rcovsVarArray[j].GetResult(), xyPLMeanArray[j].GetResult(), xyPLVarArray[j].GetResult(), xsysPLMeanArray[j].GetResult(), xsysPLVarArray[j].GetResult(), smXYPLMeanArray[j].GetResult(), smXYPLVarArray[j].GetResult(), ), ) } covsfile.Close() } tnow = time.Now() log.Printf("Done at %v\n", tnow) }
func analysis(ch chan Results) { dfile, err := os.Create(fmt.Sprintf("%s_d.csv", prefix)) if err != nil { panic(err) } defer dfile.Close() dfile.WriteString(fmt.Sprintf("#size: %d\n", size)) dfile.WriteString(fmt.Sprintf("#length: %d\n", length)) dfile.WriteString(fmt.Sprintf("#fragment: %d\n", fragment)) dfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) dfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) dfile.WriteString(fmt.Sprintf("#sample: %d\n", sample)) dfile.WriteString("#ks, vd\n") momentArr := make([][]Moments, 5) for i := 0; i < len(momentArr); i++ { for j := 0; j < maxl; j++ { moments := Moments{ Mean: desc.NewMean(), Sd: desc.NewStandardDeviationWithBiasCorrection(), } momentArr[i] = append(momentArr[i], moments) } } for i := 0; i < repeats; i++ { results := <-ch dfile.WriteString(fmt.Sprintf("%g,%g\n", results.ks, results.vd)) for j := 0; j < maxl; j++ { momentArr[0][j].Increment(results.scovs[j]) momentArr[1][j].Increment(results.rcovs[j]) momentArr[2][j].Increment(results.xyPL[j]) momentArr[3][j].Increment(results.xsysPL[j]) momentArr[4][j].Increment(results.smXYPL[j]) } if (i+1)%(repeats/100) == 0 { cfile, err := os.Create(fmt.Sprintf("%s_covs.csv", prefix)) if err != nil { panic(err) } cfile.WriteString(fmt.Sprintf("#size: %d\n", size)) cfile.WriteString(fmt.Sprintf("#length: %d\n", length)) cfile.WriteString(fmt.Sprintf("#fragment: %d\n", fragment)) cfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) cfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) cfile.WriteString(fmt.Sprintf("#sample: %d\n", sample)) cfile.WriteString(fmt.Sprintf("#replicates: %d\n", i+1)) cfile.WriteString("#dist, scov, rcov, xy, xsys, smxy_sd, scov_sd, rcov_sd, xy_sd, xsys_sd, smxy_sd\n") for j := 0; j < maxl; j++ { cfile.WriteString(fmt.Sprintf("%d,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n", j, momentArr[0][j].Mean.GetResult(), momentArr[1][j].Mean.GetResult(), momentArr[2][j].Mean.GetResult(), momentArr[3][j].Mean.GetResult(), momentArr[4][j].Mean.GetResult(), momentArr[0][j].Sd.GetResult(), momentArr[1][j].Sd.GetResult(), momentArr[2][j].Sd.GetResult(), momentArr[3][j].Sd.GetResult(), momentArr[4][j].Sd.GetResult(), )) } cfile.Close() } } }
func main() { // create d file dfile, err := os.Create(fmt.Sprintf("%s_d.csv", prefix)) if err != nil { log.Panic(err) } defer dfile.Close() // create population for simulation sp := fwd.NewSeqPop(size, lens, mutation, transfer, frag) // do eqvGens generations for reaching equilibrium for i := 0; i < eqvGens; i++ { sp.Evolve() } // create moments moments := make([][]Moment, 5) for i := 0; i < len(moments); i++ { for j := 0; j < maxl; j++ { m := Moment{ Mean: desc.NewMean(), Sd: desc.NewStandardDeviationWithBiasCorrection(), } moments[i] = append(moments[i], m) } } // do sample generations for i := 0; i < gens; i++ { sp.Evolve() seqs := sp.GetGenomes() diffmatrix := [][]int{} for j := 0; j < samp; j++ { a := rand.Intn(size) b := rand.Intn(size) for a == b { b = rand.Intn(size) } diff := []int{} for k := 0; k < lens; k++ { if seqs[a][k] != seqs[b][k] { diff = append(diff, k) } } diffmatrix = append(diffmatrix, diff) } cmatrix := covs.NewCMatrix(samp, lens, diffmatrix) ks, vd := cmatrix.D() dfile.WriteString(fmt.Sprintf("%g,%g\n", ks, vd)) scovs, rcovs, xyPL, xsysPL, smXYPL := cmatrix.CovCircle(maxl) for j := 0; j < maxl; j++ { moments[0][j].Increment(scovs[j]) moments[1][j].Increment(rcovs[j]) moments[2][j].Increment(xyPL[j]) moments[3][j].Increment(xsysPL[j]) moments[4][j].Increment(smXYPL[j]) } if (i+1)%(gens/100) == 0 { cfile, err := os.Create(fmt.Sprintf("%s_covs.csv", prefix)) if err != nil { log.Panic(err) } cfile.WriteString(fmt.Sprintf("#size: %d\n", size)) cfile.WriteString(fmt.Sprintf("#length: %d\n", lens)) cfile.WriteString(fmt.Sprintf("#fragment: %d\n", frag)) cfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) cfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) cfile.WriteString(fmt.Sprintf("#generations: %d\n", i+1)) cfile.WriteString("dist, scov, rcov, xy, xsys, smxy_sd, scov_sd, rcov_sd, xy_sd, xsys_sd, smxy_sd\n") for j := 0; j < maxl; j++ { cfile.WriteString(fmt.Sprintf("%d,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n", j, moments[0][j].Mean.GetResult(), moments[1][j].Mean.GetResult(), moments[2][j].Mean.GetResult(), moments[3][j].Mean.GetResult(), moments[4][j].Mean.GetResult(), moments[0][j].Sd.GetResult(), moments[1][j].Sd.GetResult(), moments[2][j].Sd.GetResult(), moments[3][j].Sd.GetResult(), moments[4][j].Sd.GetResult(), )) } cfile.Close() log.Printf("Finish %%%d\n", (i+1)/(gens/100)) } } // save the population for further use pfile, err := os.Create(fmt.Sprintf("%s.json", prefix)) if err != nil { log.Panic(err) } defer pfile.Close() pfile.Write(sp.Json()) }
func main() { ncpu := runtime.NumCPU() runtime.GOMAXPROCS(ncpu) ch := make(chan Result, ncpu) for i := 0; i < ncpu; i++ { b := i * reps / ncpu e := (i + 1) * reps / ncpu go simulateSome(b, e, ch) } dfile, err := os.Create(fmt.Sprintf("%s_d.csv", prefix)) if err != nil { log.Panic(err) } defer dfile.Close() dfile.WriteString(fmt.Sprintf("#size: %d\n", size)) dfile.WriteString(fmt.Sprintf("#length: %d\n", lens)) dfile.WriteString(fmt.Sprintf("#fragment: %d\n", frag)) dfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) dfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) dfile.WriteString(fmt.Sprintf("#generations: %d\n", gens)) dfile.WriteString(fmt.Sprintf("#sample: %d\n", samp)) dfile.WriteString("#ks, vd\n") moments := make([][]Moment, 5) for i := 0; i < len(moments); i++ { for j := 0; j < maxl; j++ { m := Moment{ Mean: desc.NewMean(), Sd: desc.NewStandardDeviationWithBiasCorrection(), } moments[i] = append(moments[i], m) } } for i := 0; i < reps; i++ { result := <-ch dfile.WriteString(fmt.Sprintf("%g, %g\n", result.ks, result.vd)) for j := 0; j < maxl; j++ { moments[0][j].Increment(result.scovs[j]) moments[1][j].Increment(result.rcovs[j]) moments[2][j].Increment(result.xyPL[j]) moments[3][j].Increment(result.xsysPL[j]) moments[4][j].Increment(result.smXYPL[j]) } if (i+1)%(reps/100) == 0 { err = dfile.Sync() if err != nil { log.Panic(err) } cfile, err := os.Create(fmt.Sprintf("%s_covs.csv", prefix)) if err != nil { log.Panic(err) } cfile.WriteString(fmt.Sprintf("#size: %d\n", size)) cfile.WriteString(fmt.Sprintf("#length: %d\n", lens)) cfile.WriteString(fmt.Sprintf("#fragment: %d\n", frag)) cfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) cfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) cfile.WriteString(fmt.Sprintf("#generations: %d\n", gens)) cfile.WriteString(fmt.Sprintf("#replicates: %d\n", i+1)) cfile.WriteString(fmt.Sprintf("#sample: %d\n", samp)) cfile.WriteString("#dist, scov, rcov, xy, xsys, smxy_sd, scov_sd, rcov_sd, xy_sd, xsys_sd, smxy_sd\n") for j := 0; j < maxl; j++ { cfile.WriteString(fmt.Sprintf("%d,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n", j, moments[0][j].Mean.GetResult(), moments[1][j].Mean.GetResult(), moments[2][j].Mean.GetResult(), moments[3][j].Mean.GetResult(), moments[4][j].Mean.GetResult(), moments[0][j].Sd.GetResult(), moments[1][j].Sd.GetResult(), moments[2][j].Sd.GetResult(), moments[3][j].Sd.GetResult(), moments[4][j].Sd.GetResult(), )) } cfile.Close() log.Printf("Finish %%%d\n", (i+1)/(reps/100)) } } }
func New() *MeanVar { var mv MeanVar mv.Mean = desc.NewMean() mv.Var = desc.NewVariance() return &mv }
func main() { means := make([][]*desc.Mean, 5) sds := make([][]*desc.StandardDeviation, 5) for i := 0; i < 5; i++ { means[i] = make([]*desc.Mean, maxl) sds[i] = make([]*desc.StandardDeviation, maxl) for j := 0; j < maxl; j++ { means[i][j] = desc.NewMean() sds[i][j] = desc.NewStandardDeviationWithBiasCorrection() } } dfile, err := os.Create(prefix + "_d.csv") if err != nil { panic(err) } defer dfile.Close() dfile.WriteString(fmt.Sprintf("#size: %d\n", size)) dfile.WriteString(fmt.Sprintf("#sample: %d\n", sample)) dfile.WriteString(fmt.Sprintf("#length: %d\n", length)) dfile.WriteString(fmt.Sprintf("#fragment: %d\n", fragment)) dfile.WriteString(fmt.Sprintf("#repeats: %d\n", repeats)) dfile.WriteString(fmt.Sprintf("#maxl: %d\n", maxl)) dfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) dfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) dfile.WriteString("#ks, vd\n") runtime.GOMAXPROCS(runtime.NumCPU()) t0 := time.Now() for c := 0; c < repeats; c++ { w := coals.NewWFPopulation(size, sample, length, mutation, transfer, fragment) w.Seed(c) w.Backtrace() seqs := w.Fortrace() diffmatrix := [][]int{} for i := 0; i < sample; i++ { for j := i + 1; j < sample; j++ { diff := []int{} for k := 0; k < length; k++ { if seqs[i][k] != seqs[j][k] { diff = append(diff, k) } } diffmatrix = append(diffmatrix, diff) } } cmatrix := covs.NewCMatrix(len(diffmatrix), length, diffmatrix) ks, vd := cmatrix.D() dfile.WriteString(fmt.Sprintf("%g,%g\n", ks, vd)) scovs, rcovs, xyPL, xsysPL, smXYPL := cmatrix.CovCircle(maxl) for l := 0; l < maxl; l++ { means[0][l].Increment(scovs[l]) means[1][l].Increment(rcovs[l]) means[2][l].Increment(xyPL[l]) means[3][l].Increment(xsysPL[l]) means[4][l].Increment(smXYPL[l]) sds[0][l].Increment(scovs[l]) sds[1][l].Increment(rcovs[l]) sds[2][l].Increment(xyPL[l]) sds[3][l].Increment(xsysPL[l]) sds[4][l].Increment(smXYPL[l]) } if (c+1)%(repeats/100) == 0 { t1 := time.Now() fmt.Printf("%d%%,%v\n", (c+1)/(repeats/100), t1.Sub(t0)) covfile, err := os.Create(prefix + "_covs.csv") if err != nil { fmt.Println(err) } covfile.WriteString(fmt.Sprintf("#size: %d\n", size)) covfile.WriteString(fmt.Sprintf("#sample: %d\n", sample)) covfile.WriteString(fmt.Sprintf("#length: %d\n", length)) covfile.WriteString(fmt.Sprintf("#fragment: %d\n", fragment)) covfile.WriteString(fmt.Sprintf("#repeats: %d\n", repeats)) covfile.WriteString(fmt.Sprintf("#maxl: %d\n", maxl)) covfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) covfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) covfile.WriteString("#dist, scov, rcov, xy, xsys, smxy, scov_sd, rcov_sd, xy_sd, xsys_sd, smxy_sd\n") for i := 0; i < maxl; i++ { covfile.WriteString(fmt.Sprintf("%d,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n", i, means[0][i].GetResult(), means[1][i].GetResult(), means[2][i].GetResult(), means[3][i].GetResult(), means[4][i].GetResult(), sds[0][i].GetResult()/math.Sqrt(float64(repeats)), sds[1][i].GetResult()/math.Sqrt(float64(repeats)), sds[2][i].GetResult()/math.Sqrt(float64(repeats)), sds[3][i].GetResult()/math.Sqrt(float64(repeats)), sds[4][i].GetResult()/math.Sqrt(float64(repeats)), )) } covfile.Close() } } covfile, err := os.Create(prefix + "_covs.csv") if err != nil { fmt.Println(err) } defer covfile.Close() covfile.WriteString(fmt.Sprintf("#size: %d\n", size)) covfile.WriteString(fmt.Sprintf("#sample: %d\n", sample)) covfile.WriteString(fmt.Sprintf("#length: %d\n", length)) covfile.WriteString(fmt.Sprintf("#fragment: %d\n", fragment)) covfile.WriteString(fmt.Sprintf("#repeats: %d\n", repeats)) covfile.WriteString(fmt.Sprintf("#maxl: %d\n", maxl)) covfile.WriteString(fmt.Sprintf("#mutation: %g\n", mutation)) covfile.WriteString(fmt.Sprintf("#transfer: %g\n", transfer)) covfile.WriteString("#dist, scov, rcov, xy, xsys, smxy, scov_sd, rcov_sd, xy_sd, xsys_sd, smxy_sd\n") for i := 0; i < maxl; i++ { covfile.WriteString(fmt.Sprintf("%d,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n", i, means[0][i].GetResult(), means[1][i].GetResult(), means[2][i].GetResult(), means[3][i].GetResult(), means[4][i].GetResult(), sds[0][i].GetResult()/math.Sqrt(float64(repeats)), sds[1][i].GetResult()/math.Sqrt(float64(repeats)), sds[2][i].GetResult()/math.Sqrt(float64(repeats)), sds[3][i].GetResult()/math.Sqrt(float64(repeats)), sds[4][i].GetResult()/math.Sqrt(float64(repeats)), )) } }
func TestEvolve(t *testing.T) { // population parameter var ( numofgens, samplesize int size, length, fragment int mutation, transfer float64 pop *SeqPop ksmean *desc.Mean ksvar *desc.Variance expectedKS, tolerance float64 ) samplesize = 100 size = 1000 length = 1000 mutation = 1e-4 fragment = 100 fmt.Println("--Population parameters:") fmt.Printf("---Size: %d\n", size) fmt.Printf("---Genome Length: %d\n", length) fmt.Printf("---Mutation rate: %g\n", mutation) fmt.Printf("---Transferred fragment: %d\n", fragment) fmt.Println("--Test no horizontal transfer") transfer = 0 pop = NewSeqPop(size, length, mutation, transfer, fragment) ksmean = desc.NewMean() ksvar = desc.NewVariance() numofgens = 100 for { for i := 0; i < numofgens; i++ { pop.Evolve() sample := Sample(pop.Genomes, samplesize) dmatrix := GenerateDistanceMatrix(sample) cmatrix := covs.NewCMatrix(samplesize, length, dmatrix) ks, _ := cmatrix.D() ksmean.Increment(ks) ksvar.Increment(ks) } expectedKS = covs.CalculateKS(size, mutation, transfer, fragment, 4) tolerance = math.Sqrt(ksvar.GetResult()) if math.Abs(ksmean.GetResult()-expectedKS) > tolerance { if numofgens < 10000 { numofgens *= 10 fmt.Printf("try %d generation again ...\n", numofgens) } else { t.Errorf("ks = %g, with tolerance = %g, expect %g\n", ksmean.GetResult(), tolerance, expectedKS) } } else { break } } fmt.Println("--Test horizontal transfer with same rate as mutation") transfer = mutation pop = NewSeqPop(size, length, mutation, transfer, fragment) ksmean = desc.NewMean() ksvar = desc.NewVariance() numofgens = 100 for { for i := 0; i < numofgens; i++ { pop.Evolve() sample := Sample(pop.Genomes, samplesize) dmatrix := GenerateDistanceMatrix(sample) cmatrix := covs.NewCMatrix(samplesize, length, dmatrix) ks, _ := cmatrix.D() ksmean.Increment(ks) ksvar.Increment(ks) } expectedKS = covs.CalculateKS(size, mutation, transfer, fragment, 4) tolerance = math.Sqrt(ksvar.GetResult()) if math.Abs(ksmean.GetResult()-expectedKS) > tolerance { if numofgens < 10000 { numofgens *= 10 fmt.Printf("try %d generation again ...\n", numofgens) } else { t.Errorf("ks = %g, with tolerance = %g, expect %g\n", ksmean.GetResult(), tolerance, expectedKS) } } else { break } } fmt.Println("--Test horizontal transfer with 100 times of mutation rate") transfer = mutation * 100.0 pop = NewSeqPop(size, length, mutation, transfer, fragment) ksmean = desc.NewMean() ksvar = desc.NewVariance() numofgens = 100 for { for i := 0; i < numofgens; i++ { pop.Evolve() sample := Sample(pop.Genomes, samplesize) dmatrix := GenerateDistanceMatrix(sample) cmatrix := covs.NewCMatrix(samplesize, length, dmatrix) ks, _ := cmatrix.D() ksmean.Increment(ks) ksvar.Increment(ks) } expectedKS = covs.CalculateKS(size, mutation, transfer, fragment, 4) tolerance = math.Sqrt(ksvar.GetResult()) if math.Abs(ksmean.GetResult()-expectedKS) > tolerance { if numofgens < 10000 { numofgens *= 10 fmt.Printf("try %d generation again ...\n", numofgens) } else { t.Errorf("ks = %g, with tolerance = %g, expect %g\n", ksmean.GetResult(), tolerance, expectedKS) } } else { break } } }
func main() { momentArr := make([][]Moments, 5) for i := 0; i < num; i++ { filename := fmt.Sprintf("%s/covs_%d.csv", dir, i) f, err := os.Open(filename) if err != nil { log.Panic(err) } reader := csv.NewReader(f) reader.Comment = '#' records, err := reader.ReadAll() if err != nil { log.Panic(err) } for j, rec := range records { if j >= len(momentArr[0]) { for k := 0; k < len(momentArr); k++ { m := Moments{ Mean: desc.NewMean(), Sd: desc.NewStandardDeviationWithBiasCorrection(), } momentArr[k] = append(momentArr[k], m) } } for k := 0; k < len(momentArr); k++ { v, err := strconv.ParseFloat(rec[k+1], 64) if err != nil { log.Panic(err) } momentArr[k][j].Increment(v) } } f.Close() } filename := fmt.Sprintf("%s_covs.csv", path.Base(dir)) f, err := os.Create(filename) if err != nil { log.Panic(err) } defer f.Close() for i := 0; i < len(momentArr[0]); i++ { f.WriteString(fmt.Sprintf("%d,%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n", i, momentArr[0][i].Mean.GetResult(), momentArr[1][i].Mean.GetResult(), momentArr[2][i].Mean.GetResult(), momentArr[3][i].Mean.GetResult(), momentArr[4][i].Mean.GetResult(), momentArr[0][i].Sd.GetResult(), momentArr[1][i].Sd.GetResult(), momentArr[2][i].Sd.GetResult(), momentArr[3][i].Sd.GetResult(), momentArr[4][i].Sd.GetResult(), )) } }