// NewDHT creates a new DHT object with the given peer as the 'local' host func NewDHT(ctx context.Context, h host.Host, dstore ds.ThreadSafeDatastore) *IpfsDHT { dht := new(IpfsDHT) dht.datastore = dstore dht.self = h.ID() dht.peerstore = h.Peerstore() dht.host = h // register for network notifs. dht.host.Network().Notify((*netNotifiee)(dht)) dht.proc = goprocess.WithTeardown(func() error { // remove ourselves from network notifs. dht.host.Network().StopNotify((*netNotifiee)(dht)) return nil }) dht.ctx = ctx h.SetStreamHandler(ProtocolDHT, dht.handleNewStream) dht.providers = NewProviderManager(dht.ctx, dht.self) dht.proc.AddChild(dht.providers.proc) goprocessctx.CloseAfterContext(dht.proc, ctx) dht.routingTable = kb.NewRoutingTable(20, kb.ConvertPeerID(dht.self), time.Minute, dht.peerstore) dht.birth = time.Now() dht.Validator = make(record.Validator) dht.Validator["pk"] = record.PublicKeyValidator dht.Selector = make(record.Selector) dht.Selector["pk"] = record.PublicKeySelector return dht }
func NewResultBuilder(q Query) *ResultBuilder { b := &ResultBuilder{ Query: q, Output: make(chan Result), } b.Process = goprocess.WithTeardown(func() error { close(b.Output) return nil }) return b }
func NewStream(w io.Writer, r io.Reader) *stream { s := &stream{ Reader: r, Writer: w, toDeliver: make(chan *transportObject), } s.proc = process.WithTeardown(s.teardown) s.proc.Go(s.transport) return s }
// New initializes a BitSwap instance that communicates over the provided // BitSwapNetwork. This function registers the returned instance as the network // delegate. // Runs until context is cancelled. func New(parent context.Context, p peer.ID, network bsnet.BitSwapNetwork, bstore blockstore.Blockstore, nice bool) exchange.Interface { // important to use provided parent context (since it may include important // loggable data). It's probably not a good idea to allow bitswap to be // coupled to the concerns of the IPFS daemon in this way. // // FIXME(btc) Now that bitswap manages itself using a process, it probably // shouldn't accept a context anymore. Clients should probably use Close() // exclusively. We should probably find another way to share logging data ctx, cancelFunc := context.WithCancel(parent) notif := notifications.New() px := process.WithTeardown(func() error { notif.Shutdown() return nil }) bs := &Bitswap{ self: p, blockstore: bstore, notifications: notif, engine: decision.NewEngine(ctx, bstore), // TODO close the engine with Close() method network: network, findKeys: make(chan *blockRequest, sizeBatchRequestChan), process: px, newBlocks: make(chan *blocks.Block, HasBlockBufferSize), provideKeys: make(chan key.Key, provideKeysBufferSize), wm: NewWantManager(ctx, network), } go bs.wm.Run() network.SetDelegate(bs) // Start up bitswaps async worker routines bs.startWorkers(px, ctx) // bind the context and process. // do it over here to avoid closing before all setup is done. go func() { <-px.Closing() // process closes first cancelFunc() }() procctx.CloseAfterContext(px, ctx) // parent cancelled first return bs }
// NewMapping attemps to construct a mapping on protocol and internal port // It will also periodically renew the mapping until the returned Mapping // -- or its parent NAT -- is Closed. // // May not succeed, and mappings may change over time; // NAT devices may not respect our port requests, and even lie. // Clients should not store the mapped results, but rather always // poll our object for the latest mappings. func (nat *NAT) NewMapping(maddr ma.Multiaddr) (Mapping, error) { if nat == nil { return nil, fmt.Errorf("no nat available") } network, addr, err := manet.DialArgs(maddr) if err != nil { return nil, fmt.Errorf("DialArgs failed on addr:", maddr.String()) } switch network { case "tcp", "tcp4", "tcp6": network = "tcp" case "udp", "udp4", "udp6": network = "udp" default: return nil, fmt.Errorf("transport not supported by NAT: %s", network) } intports := strings.Split(addr, ":")[1] intport, err := strconv.Atoi(intports) if err != nil { return nil, err } m := &mapping{ nat: nat, proto: network, intport: intport, intaddr: maddr, } m.proc = goprocess.WithTeardown(func() error { nat.rmMapping(m) return nil }) nat.addMapping(m) m.proc.AddChild(periodic.Every(MappingDuration/3, func(worker goprocess.Process) { nat.establishMapping(m) })) // do it once synchronously, so first mapping is done right away, and before exiting, // allowing users -- in the optimistic case -- to use results right after. nat.establishMapping(m) return m, nil }
func newNatManager(host *BasicHost) *natManager { nmgr := &natManager{ host: host, ready: make(chan struct{}), proc: goprocess.WithParent(host.proc), } // teardown nmgr.proc = goprocess.WithTeardown(func() error { // on closing, unregister from network notifications. host.Network().StopNotify((*nmgrNetNotifiee)(nmgr)) return nil }) // host is our parent. close when host closes. host.proc.AddChild(nmgr.proc) // discover the nat. nmgr.discoverNAT() return nmgr }
// New constructs and sets up a new *BasicHost with given Network func New(net inet.Network, opts ...interface{}) *BasicHost { h := &BasicHost{ network: net, mux: protocol.NewMux(), bwc: metrics.NewBandwidthCounter(), } h.proc = goprocess.WithTeardown(func() error { if h.natmgr != nil { h.natmgr.Close() } return h.Network().Close() }) // setup host services h.ids = identify.NewIDService(h) h.relay = relay.NewRelayService(h, h.Mux().HandleSync) for _, o := range opts { switch o := o.(type) { case Option: switch o { case NATPortMap: h.natmgr = newNatManager(h) } case metrics.Reporter: h.bwc = o } } net.SetConnHandler(h.newConnHandler) net.SetStreamHandler(h.newStreamHandler) return h }
// WithContextAndTeardown is a helper function to set teardown at initiation // of WithContext func WithContextAndTeardown(ctx context.Context, tf goprocess.TeardownFunc) goprocess.Process { p := goprocess.WithTeardown(tf) CloseAfterContext(p, ctx) return p }