func main() { var testnet bool if len(os.Args) < 3 { fmt.Println("Specify B_secret, A_public_key and optionaly number of addresses you want.") fmt.Println("Use a negative value for number of addresses, to work with Testnet addresses.") return } A_public_key, er := hex.DecodeString(os.Args[2]) if er != nil { println("Error parsing A_public_key:", er.Error()) os.Exit(1) } pubk, er := btc.NewPublicKey(A_public_key) if er != nil { println("Invalid valid public key:", er.Error()) os.Exit(1) } compressed := len(A_public_key) == 33 B_secret, er := hex.DecodeString(os.Args[1]) if er != nil { println("Error parsing B_secret:", er.Error()) os.Exit(1) } sec := new(big.Int).SetBytes(B_secret) n := int64(25) if len(os.Args) > 3 { n, er = strconv.ParseInt(os.Args[3], 10, 32) if er != nil { println("Error parsing number of keys value:", er.Error()) os.Exit(1) } if n == 0 { return } if n < 0 { n = -n testnet = true } } fmt.Println("# Type-2") fmt.Println("#", hex.EncodeToString(pubk.Bytes(compressed))) fmt.Println("#", hex.EncodeToString(sec.Bytes())) for i := 1; i <= int(n); i++ { fmt.Println(btc.NewAddrFromPubkey(pubk.Bytes(compressed), btc.AddrVerPubkey(testnet)).String(), "TypB", i) if i >= int(n) { break } pubk.X, pubk.Y = btc.DeriveNextPublic(pubk.X, pubk.Y, sec) } }
func main() { var testnet bool if len(os.Args) < 3 { fmt.Println("Specify secret, public_key and optionaly number of addresses you want.") fmt.Println("Use a negative value for number of addresses, to work with Testnet addresses.") return } public_key, er := hex.DecodeString(os.Args[2]) if er != nil { println("Error parsing public_key:", er.Error()) os.Exit(1) } if len(public_key) == 33 && (public_key[0] == 2 || public_key[0] == 3) { fmt.Println("Compressed") } else if len(public_key) == 65 && (public_key[0] == 4) { fmt.Println("Uncompressed") } else { println("Incorrect public key") } secret, er := hex.DecodeString(os.Args[1]) if er != nil { println("Error parsing secret:", er.Error()) os.Exit(1) } n := int64(25) if len(os.Args) > 3 { n, er = strconv.ParseInt(os.Args[3], 10, 32) if er != nil { println("Error parsing number of keys value:", er.Error()) os.Exit(1) } if n == 0 { return } if n < 0 { n = -n testnet = true } } fmt.Println("# Type-2") fmt.Println("#", hex.EncodeToString(public_key)) fmt.Println("#", hex.EncodeToString(secret)) for i := 1; i <= int(n); i++ { fmt.Println(btc.NewAddrFromPubkey(public_key, btc.AddrVerPubkey(testnet)).String(), "TypB", i) if i >= int(n) { break } public_key = btc.DeriveNextPublic(public_key, secret) } }
func main() { if len(os.Args) < 3 { fmt.Println("Specify B_secret and A_public_key to get the next Type-2 deterministic address") fmt.Println("Add -t as the third argument to work with Testnet addresses.") return } A_public_key, er := hex.DecodeString(os.Args[2]) if er != nil { println("Error parsing A_public_key:", er.Error()) os.Exit(1) } pubk, er := btc.NewPublicKey(A_public_key) if er != nil { println("Invalid valid public key:", er.Error()) os.Exit(1) } compressed := len(A_public_key) == 33 B_secret, er := hex.DecodeString(os.Args[1]) if er != nil { println("Error parsing B_secret:", er.Error()) os.Exit(1) } sec := new(big.Int).SetBytes(B_secret) testnet := len(os.Args) > 3 && os.Args[3] == "-t" // Old address fmt.Print(btc.NewAddrFromPubkey(pubk.Bytes(compressed), btc.AddrVerPubkey(testnet)).String(), " => ") pubk.X, pubk.Y = btc.DeriveNextPublic(pubk.X, pubk.Y, sec) // New address fmt.Println(btc.NewAddrFromPubkey(pubk.Bytes(compressed), btc.AddrVerPubkey(testnet)).String()) // New key fmt.Println(hex.EncodeToString(pubk.Bytes(compressed))) }
func main() { if len(os.Args) < 3 { fmt.Println("Specify secret and public_key to get the next Type-2 deterministic address") fmt.Println("Add -t as the third argument to work with Testnet addresses.") return } public_key, er := hex.DecodeString(os.Args[2]) if er != nil { println("Error parsing public_key:", er.Error()) os.Exit(1) } if len(public_key) == 33 && (public_key[0] == 2 || public_key[0] == 3) { fmt.Println("Compressed") } else if len(public_key) == 65 && (public_key[0] == 4) { fmt.Println("Uncompressed") } else { println("Incorrect public key") } secret, er := hex.DecodeString(os.Args[1]) if er != nil { println("Error parsing secret:", er.Error()) os.Exit(1) } testnet := len(os.Args) > 3 && os.Args[3] == "-t" // Old address public_key = btc.DeriveNextPublic(public_key, secret) // New address fmt.Println(btc.NewAddrFromPubkey(public_key, btc.AddrVerPubkey(testnet)).String()) // New key fmt.Println(hex.EncodeToString(public_key)) }
func do_scan_stealth(p string, ignore_prefix bool) { sa, _ := btc.NewStealthAddrFromString(p) if sa == nil { fmt.Println("Specify base58 encoded stealth address") return } if sa.Version != btc.StealthAddressVersion(common.CFG.Testnet) { fmt.Println("Incorrect version of the stealth address") return } if len(sa.SpendKeys) != 1 { fmt.Println("Currently only single spend keys are supported. This address has", len(sa.SpendKeys)) return } //fmt.Println("scankey", hex.EncodeToString(sa.ScanKey[:])) if ignore_prefix { sa.Prefix = []byte{0} fmt.Println("Ignoring Prefix inside the address") } else if len(sa.Prefix) == 0 { fmt.Println("Prefix not present in the address") } else { fmt.Println("Prefix", sa.Prefix[0], hex.EncodeToString(sa.Prefix[1:])) } ds := wallet.FetchStealthKeys() if len(ds) == 0 { return } defer func() { for i := range ds { utils.ClearBuffer(ds[i]) } }() // clear the keys in mem after all var d []byte for i := range ds { if bytes.Equal(btc.PublicFromPrivate(ds[i], true), sa.ScanKey[:]) { d = ds[i] } } if d == nil { fmt.Println("No matching secret found your wallet/stealth folder") return } var pos []*btc.TxPrevOut cs := make(map[uint64][]byte) as := make(map[uint64]*btc.BtcAddr) var ncnt uint common.BlockChain.Unspent.ScanStealth(sa, func(eth, txid []byte, vout uint32, scr []byte) bool { if len(scr) == 25 && scr[0] == 0x76 && scr[1] == 0xa9 && scr[2] == 0x14 && scr[23] == 0x88 && scr[24] == 0xac { var h160 [20]byte //yes := btc.NewUint256(txid).String()=="9cc90ff2528b49dfd9c53e5e90c98a1fd45d577af7f3a9e7a9f8a86b52fb0280" c := btc.StealthDH(eth, d) spen_exp := btc.DeriveNextPublic(sa.SpendKeys[0][:], c) btc.RimpHash(spen_exp, h160[:]) if bytes.Equal(scr[3:23], h160[:]) { po := new(btc.TxPrevOut) copy(po.Hash[:], txid) po.Vout = vout pos = append(pos, po) cs[po.UIdx()] = c as[po.UIdx()] = btc.NewAddrFromHash160(h160[:], btc.AddrVerPubkey(common.CFG.Testnet)) } ncnt++ /*fmt.Printf("%s with c=%s", btc.NewAddrFromHash160(h160[:], btc.AddrVerPubkey(common.CFG.Testnet)).String(), hex.EncodeToString(c)) fmt.Println()*/ return true } else { return false } }) fmt.Println(len(pos), "outputs, out of", ncnt, "notifications belonged to our wallet") var unsp btc.AllUnspentTx for i := range pos { po, e := common.BlockChain.Unspent.UnspentGet(pos[i]) if e != nil { println("UnspentGet:", e.Error()) println("This should not happen - please, report a bug.") println("You can probably fix it by launching the client with -rescan") os.Exit(1) } //fmt.Println(btc.NewUint256(pos[i].Hash[:]), pos[i].Vout+1, hex.EncodeToString(cs[pos[i].UIdx()])) one := &btc.OneUnspentTx{ TxPrevOut: *pos[i], Value: po.Value, MinedAt: po.BlockHeight, BtcAddr: as[pos[i].UIdx()], StealthC: cs[pos[i].UIdx()]} unsp = append(unsp, one) } sort.Sort(unsp) os.RemoveAll("balance") os.MkdirAll("balance/", 0770) utxt, _ := os.Create("balance/unspent.txt") fmt.Print(wallet.DumpBalance(unsp, utxt, true, false)) }
// load the content of the "balance/" folder func load_balance(showbalance bool) { var unknownInputs, multisigInputs int f, e := os.Open("balance/unspent.txt") if e != nil { println(e.Error()) return } rd := bufio.NewReader(f) for { l, _, e := rd.ReadLine() if len(l) == 0 && e != nil { break } if l[64] == '-' { txid := btc.NewUint256FromString(string(l[:64])) rst := strings.SplitN(string(l[65:]), " ", 2) vout, _ := strconv.ParseUint(rst[0], 10, 32) uns := new(btc.TxPrevOut) copy(uns.Hash[:], txid.Hash[:]) uns.Vout = uint32(vout) lab := "" if len(rst) > 1 { lab = rst[1] } str := string(l) if sti := strings.Index(str, "_StealthC:"); sti != -1 { c, e := hex.DecodeString(str[sti+10 : sti+10+64]) if e != nil { fmt.Println("ERROR at stealth", txid.String(), vout, e.Error()) } else { // add a new key to the wallet sec := btc.DeriveNextPrivate(first_seed[:], c) is_stealth[len(priv_keys)] = true priv_keys = append(priv_keys, sec) labels = append(labels, lab) pub_key := btc.PublicFromPrivate(sec, true) publ_addrs = append(publ_addrs, btc.NewAddrFromPubkey(pub_key, btc.AddrVerPubkey(*testnet))) compressed_key = append(compressed_key, true) // stealth keys are always compressed } } if _, ok := loadedTxs[txid.Hash]; !ok { tf, _ := os.Open("balance/" + txid.String() + ".tx") if tf != nil { siz, _ := tf.Seek(0, os.SEEK_END) tf.Seek(0, os.SEEK_SET) buf := make([]byte, siz) tf.Read(buf) tf.Close() th := btc.Sha2Sum(buf) if bytes.Equal(th[:], txid.Hash[:]) { tx, _ := btc.NewTx(buf) if tx != nil { loadedTxs[txid.Hash] = tx } else { println("transaction is corrupt:", txid.String()) } } else { println("transaction file is corrupt:", txid.String()) os.Exit(1) } } else { println("transaction file not found:", txid.String()) os.Exit(1) } } // Sum up all the balance and check if we have private key for this input uo := UO(uns) add_it := true if !btc.IsP2SH(uo.Pk_script) { fnd := false for j := range publ_addrs { if publ_addrs[j].Owns(uo.Pk_script) { fnd = true break } } if !fnd { if *onlvalid { add_it = false } if showbalance { unknownInputs++ if *verbose { ss := uns.String() ss = ss[:8] + "..." + ss[len(ss)-12:] fmt.Println(ss, "does not belong to your wallet (cannot sign it)") } } } } else { if *onlvalid { add_it = false } if *verbose { ss := uns.String() ss = ss[:8] + "..." + ss[len(ss)-12:] fmt.Println(ss, "belongs to a multisig address") } multisigInputs++ } if add_it { unspentOuts = append(unspentOuts, uns) unspentOutsLabel = append(unspentOutsLabel, lab) totBtc += UO(uns).Value } } } f.Close() fmt.Printf("You have %.8f BTC in %d unspent outputs. %d inputs are multisig type\n", float64(totBtc)/1e8, len(unspentOuts), multisigInputs) if showbalance { if unknownInputs > 0 { fmt.Printf("WARNING: Some inputs (%d) cannot be spent with this password (-v to print them)\n", unknownInputs) } } }
/* { "address" : "2NAHUDSC1EmbTBwQQp4VQ2FNzWDqHtmk1i6", "redeemScript" : "512102cdc4fff0ad031ea5f2d0d4337e2bf976b84334f8f80b08fe3f69886d58bc5a8a2102ebf54926d3edaae51bde71f2976948559a8d43fce52f5e7ed9ed85dbaa449d7f52ae" } */ func main() { var testnet bool if len(os.Args) < 3 { fmt.Println("Specify one integer and at least one public key.") fmt.Println("For Testent, make the integer negative.") return } cnt, er := strconv.ParseInt(os.Args[1], 10, 32) if er != nil { println("Count value:", er.Error()) return } if cnt < 0 { testnet = true cnt = -cnt } if cnt < 1 || cnt > 16 { println("The integer (required number of keys) must be between 1 and 16") return } buf := new(bytes.Buffer) buf.WriteByte(byte(0x50 + cnt)) fmt.Println("Trying to prepare multisig address for", cnt, "out of", len(os.Args)-2, "public keys ...") var pkeys byte var ads string for i := 2; i < len(os.Args); i++ { if pkeys == 16 { println("Oh, give me a break. You don't need more than 16 public keys - stopping here!") break } d, er := hex.DecodeString(os.Args[i]) if er != nil { println("pubkey", i, er.Error()) } _, er = btc.NewPublicKey(d) if er != nil { println("pubkey", i, er.Error()) return } pkeys++ buf.WriteByte(byte(len(d))) buf.Write(d) if ads != "" { ads += ", " } ads += "\"" + btc.NewAddrFromPubkey(d, btc.AddrVerPubkey(testnet)).String() + "\"" } buf.WriteByte(0x50 + pkeys) buf.WriteByte(0xae) p2sh := buf.Bytes() addr := btc.NewAddrFromPubkey(p2sh, btc.AddrVerScript(testnet)) rec := "{\n" rec += fmt.Sprintf("\t\"multiAddress\" : \"%s\",\n", addr.String()) rec += fmt.Sprintf("\t\"scriptPubKey\" : \"a914%s87\",\n", hex.EncodeToString(addr.Hash160[:])) rec += fmt.Sprintf("\t\"keysRequired\" : %d,\n", cnt) rec += fmt.Sprintf("\t\"keysProvided\" : %d,\n", pkeys) rec += fmt.Sprintf("\t\"redeemScript\" : \"%s\",\n", hex.EncodeToString(p2sh)) rec += fmt.Sprintf("\t\"listOfAddres\" : [%s]\n", ads) rec += "}\n" fname := addr.String() + ".json" ioutil.WriteFile(fname, []byte(rec), 0666) fmt.Println("The address record stored in", fname) }
// Thanks @dabura667 - https://bitcointalk.org/index.php?topic=590349.msg6560332#msg6560332 func stealth_txout(sa *btc.StealthAddr, value uint64) (res []*btc.TxOut) { if sa.Version != btc.StealthAddressVersion(*testnet) { fmt.Println("ERROR: Unsupported version of a stealth address", sa.Version) os.Exit(1) } if len(sa.SpendKeys) != 1 { fmt.Println("ERROR: Currently only non-multisig stealth addresses are supported", len(sa.SpendKeys)) os.Exit(1) } // Make two outpus res = make([]*btc.TxOut, 2) var e, ephemkey, pkscr []byte var nonce, nonce_from uint32 var look4pref bool sha := sha256.New() // 6. create a new pub/priv keypair (lets call its pubkey "ephemkey" and privkey "e") pick_different_e: e = make([]byte, 32) rand.Read(e) defer utils.ClearBuffer(e) ephemkey = btc.PublicFromPrivate(e, true) if *verbose { fmt.Println("e", hex.EncodeToString(e)) fmt.Println("ephemkey", hex.EncodeToString(ephemkey)) } // 7. IF there is a prefix in the stealth address, brute force a nonce such // that SHA256(nonce.concate(ephemkey)) first 4 bytes are equal to the prefix. // IF NOT, then just run through the loop once and pickup a random nonce. // (probably make the while condition include "or prefix = null" or something to that nature. look4pref = len(sa.Prefix) > 0 && sa.Prefix[0] > 0 if look4pref { fmt.Print("Prefix is ", sa.Prefix[0], ":", hex.EncodeToString(sa.Prefix[1:]), " - looking for nonce...") } binary.Read(rand.Reader, binary.LittleEndian, &nonce_from) nonce = nonce_from for { binary.Write(sha, binary.LittleEndian, nonce) sha.Write(ephemkey) if sa.CheckPrefix(sha.Sum(nil)[:4]) { break } sha.Reset() nonce++ if nonce == nonce_from { fmt.Println("EOF") goto pick_different_e } if (nonce & 0xfffff) == 0 { fmt.Print(".") } } if look4pref { fmt.Println(uint32(nonce - nonce_from)) } // 8. Once you have the nonce and the ephemkey, you can create the first output, which is pkscr = make([]byte, 40) pkscr[0] = 0x6a // OP_RETURN pkscr[1] = 38 // length pkscr[2] = 0x06 // always 6 binary.LittleEndian.PutUint32(pkscr[3:7], nonce) copy(pkscr[7:40], ephemkey) res[0] = &btc.TxOut{Pk_script: pkscr} // 9. Now use ECC multiplication to calculate e*Q where Q = scan_pubkey // an e = privkey to ephemkey and then hash it. c := btc.StealthDH(sa.ScanKey[:], e) if *verbose { fmt.Println("c", hex.EncodeToString(c)) } // 10. That hash is now "c". use ECC multiplication and addition to // calculate D + (c*G) where D = spend_pubkey, and G is the reference // point for secp256k1. This will give you a new pubkey. (we'll call it D') Dpr := btc.DeriveNextPublic(sa.SpendKeys[0][:], c) if *verbose { fmt.Println("Dpr", hex.EncodeToString(Dpr)) } // 11. Create a normal P2KH output spending to D' as public key. adr := btc.NewAddrFromPubkey(Dpr, btc.AddrVerPubkey(*testnet)) res[1] = &btc.TxOut{Value: value, Pk_script: adr.OutScript()} fmt.Println("Sending to stealth", adr.String()) return }