func main() { var testnet bool if len(os.Args) != 2 { fmt.Println("Specify one P2KH bitcoin address to see it's P2SH-P2WPKH deposit address") fmt.Println("WARNING: Make sure the input address comes from an uncompressed key!!!!!") return } aa, er := btc.NewAddrFromString(os.Args[1]) if er != nil { println(er.Error()) return } if btc.AddrVerPubkey(false) == aa.Version { } else if btc.AddrVerPubkey(true) == aa.Version { testnet = true } else { fmt.Println("This does nto seem to be P2KH type address") return } h160 := btc.Rimp160AfterSha256(append([]byte{0, 20}, aa.Hash160[:]...)) aa = btc.NewAddrFromHash160(h160[:], btc.AddrVerScript(testnet)) fmt.Println(aa.String()) }
func json_balance(w http.ResponseWriter, r *http.Request) { if !ipchecker(r) { return } if r.Method != "POST" { return } summary := len(r.Form["summary"]) > 0 inp, er := ioutil.ReadAll(r.Body) if er != nil { println(er.Error()) return } var addrs []string er = json.Unmarshal(inp, &addrs) if er != nil { println(er.Error()) return } type OneOut struct { TxId string Vout uint32 Value uint64 Height uint32 Coinbase bool Message string Addr string } type OneOuts struct { Value uint64 OutCnt int SegWitCnt int SegWitAddr string Outs []OneOut } out := make(map[string]*OneOuts) lck := new(usif.OneLock) lck.In.Add(1) lck.Out.Add(1) usif.LocksChan <- lck lck.In.Wait() for _, a := range addrs { aa, e := btc.NewAddrFromString(a) if e != nil { continue } unsp := wallet.GetAllUnspent(aa) newrec := new(OneOuts) if len(unsp) > 0 { newrec.OutCnt = len(unsp) for _, u := range unsp { newrec.Value += u.Value if !summary { newrec.Outs = append(newrec.Outs, OneOut{ TxId: btc.NewUint256(u.TxPrevOut.Hash[:]).String(), Vout: u.Vout, Value: u.Value, Height: u.MinedAt, Coinbase: u.Coinbase, Message: html.EscapeString(string(u.Message)), Addr: a}) } } } out[aa.String()] = newrec /* Segwit P2WPKH: */ if aa.Version == btc.AddrVerPubkey(common.Testnet) { // SegWit if applicable h160 := btc.Rimp160AfterSha256(append([]byte{0, 20}, aa.Hash160[:]...)) aa = btc.NewAddrFromHash160(h160[:], btc.AddrVerScript(common.Testnet)) newrec.SegWitAddr = aa.String() unsp = wallet.GetAllUnspent(aa) if len(unsp) > 0 { newrec.OutCnt += len(unsp) newrec.SegWitCnt = len(unsp) as := aa.String() for _, u := range unsp { newrec.Value += u.Value if !summary { newrec.Outs = append(newrec.Outs, OneOut{ TxId: btc.NewUint256(u.TxPrevOut.Hash[:]).String(), Vout: u.Vout, Value: u.Value, Height: u.MinedAt, Coinbase: u.Coinbase, Message: html.EscapeString(string(u.Message)), Addr: as}) } } } } } lck.Out.Done() bx, er := json.Marshal(out) if er == nil { w.Header()["Content-Type"] = []string{"application/json"} w.Write(bx) } else { println(er.Error()) } }
func evalScript(p []byte, stack *scrStack, tx *btc.Tx, inp int, ver_flags uint32) bool { if DBG_SCR { fmt.Println("script len", len(p)) } if len(p) > 10000 { if DBG_ERR { fmt.Println("script too long", len(p)) } return false } defer func() { if r := recover(); r != nil { if DBG_ERR { err, ok := r.(error) if !ok { err = fmt.Errorf("pkg: %v", r) } fmt.Println("evalScript panic:", err.Error()) fmt.Println(string(debug.Stack())) } } }() var exestack scrStack var altstack scrStack sta, idx, opcnt := 0, 0, 0 checkMinVals := (ver_flags & VER_MINDATA) != 0 for idx < len(p) { inexec := exestack.nofalse() // Read instruction opcode, pushval, n, e := btc.GetOpcode(p[idx:]) if e != nil { //fmt.Println(e.Error()) //fmt.Println("A", idx, hex.EncodeToString(p)) return false } idx += n if DBG_SCR { fmt.Printf("\nExecuting opcode 0x%02x n=%d inexec:%t push:%s..\n", opcode, n, inexec, hex.EncodeToString(pushval)) stack.print() } if pushval != nil && len(pushval) > btc.MAX_SCRIPT_ELEMENT_SIZE { if DBG_ERR { fmt.Println("pushval too long", len(pushval)) } return false } if opcode > 0x60 { opcnt++ if opcnt > 201 { if DBG_ERR { fmt.Println("evalScript: too many opcodes A") } return false } } if opcode == 0x7e /*OP_CAT*/ || opcode == 0x7f /*OP_SUBSTR*/ || opcode == 0x80 /*OP_LEFT*/ || opcode == 0x81 /*OP_RIGHT*/ || opcode == 0x83 /*OP_INVERT*/ || opcode == 0x84 /*OP_AND*/ || opcode == 0x85 /*OP_OR*/ || opcode == 0x86 /*OP_XOR*/ || opcode == 0x8d /*OP_2MUL*/ || opcode == 0x8e /*OP_2DIV*/ || opcode == 0x95 /*OP_MUL*/ || opcode == 0x96 /*OP_DIV*/ || opcode == 0x97 /*OP_MOD*/ || opcode == 0x98 /*OP_LSHIFT*/ || opcode == 0x99 /*OP_RSHIFT*/ { if DBG_ERR { fmt.Println("Unsupported opcode", opcode) } return false } if inexec && 0 <= opcode && opcode <= btc.OP_PUSHDATA4 { if checkMinVals && !checkMinimalPush(pushval, opcode) { if DBG_ERR { fmt.Println("Push value not in a minimal format", hex.EncodeToString(pushval)) } return false } stack.push(pushval) if DBG_SCR { fmt.Println("pushed", len(pushval), "bytes") } } else if inexec || (0x63 /*OP_IF*/ <= opcode && opcode <= 0x68 /*OP_ENDIF*/) { switch { case opcode == 0x4f: // OP_1NEGATE stack.pushInt(-1) case opcode >= 0x51 && opcode <= 0x60: // OP_1-OP_16 stack.pushInt(int64(opcode - 0x50)) case opcode == 0x61: // OP_NOP // Do nothing /* - not handled OP_VER = 0x62 */ case opcode == 0x63 || opcode == 0x64: //OP_IF || OP_NOTIF // <expression> if [statements] [else [statements]] endif val := false if inexec { if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for", opcode) } return false } if opcode == 0x63 /*OP_IF*/ { val = stack.popBool() } else { val = !stack.popBool() } } if DBG_SCR { fmt.Println(inexec, "if pushing", val, "...") } exestack.pushBool(val) /* - not handled OP_VERIF = 0x65, OP_VERNOTIF = 0x66, */ case opcode == 0x67: //OP_ELSE if exestack.size() == 0 { if DBG_ERR { fmt.Println("exestack empty in OP_ELSE") } } exestack.pushBool(!exestack.popBool()) case opcode == 0x68: //OP_ENDIF if exestack.size() == 0 { if DBG_ERR { fmt.Println("exestack empty in OP_ENDIF") } } exestack.pop() case opcode == 0x69: //OP_VERIFY if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } if !stack.topBool(-1) { return false } stack.pop() case opcode == 0x6b: //OP_TOALTSTACK if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } altstack.push(stack.pop()) case opcode == 0x6c: //OP_FROMALTSTACK if altstack.size() < 1 { if DBG_ERR { fmt.Println("AltStack too short for opcode", opcode) } return false } stack.push(altstack.pop()) case opcode == 0x6d: //OP_2DROP if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.pop() stack.pop() case opcode == 0x6e: //OP_2DUP if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x1 := stack.top(-1) x2 := stack.top(-2) stack.push(x2) stack.push(x1) case opcode == 0x6f: //OP_3DUP if stack.size() < 3 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x1 := stack.top(-3) x2 := stack.top(-2) x3 := stack.top(-1) stack.push(x1) stack.push(x2) stack.push(x3) case opcode == 0x70: //OP_2OVER if stack.size() < 4 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x1 := stack.top(-4) x2 := stack.top(-3) stack.push(x1) stack.push(x2) case opcode == 0x71: //OP_2ROT // (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) if stack.size() < 6 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x6 := stack.pop() x5 := stack.pop() x4 := stack.pop() x3 := stack.pop() x2 := stack.pop() x1 := stack.pop() stack.push(x3) stack.push(x4) stack.push(x5) stack.push(x6) stack.push(x1) stack.push(x2) case opcode == 0x72: //OP_2SWAP // (x1 x2 x3 x4 -- x3 x4 x1 x2) if stack.size() < 4 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x4 := stack.pop() x3 := stack.pop() x2 := stack.pop() x1 := stack.pop() stack.push(x3) stack.push(x4) stack.push(x1) stack.push(x2) case opcode == 0x73: //OP_IFDUP if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } if stack.topBool(-1) { stack.push(stack.top(-1)) } case opcode == 0x74: //OP_DEPTH stack.pushInt(int64(stack.size())) case opcode == 0x75: //OP_DROP if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.pop() case opcode == 0x76: //OP_DUP if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } el := stack.pop() stack.push(el) stack.push(el) case opcode == 0x77: //OP_NIP if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x := stack.pop() stack.pop() stack.push(x) case opcode == 0x78: //OP_OVER if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.push(stack.top(-2)) case opcode == 0x79 || opcode == 0x7a: //OP_PICK || OP_ROLL if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } n := stack.popInt(checkMinVals) if n < 0 || n >= int64(stack.size()) { if DBG_ERR { fmt.Println("Wrong n for opcode", opcode) } return false } if opcode == 0x79 /*OP_PICK*/ { stack.push(stack.top(int(-1 - n))) } else if n > 0 { tmp := make([][]byte, n) for i := range tmp { tmp[i] = stack.pop() } xn := stack.pop() for i := len(tmp) - 1; i >= 0; i-- { stack.push(tmp[i]) } stack.push(xn) } case opcode == 0x7b: //OP_ROT if stack.size() < 3 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x3 := stack.pop() x2 := stack.pop() x1 := stack.pop() stack.push(x2) stack.push(x3) stack.push(x1) case opcode == 0x7c: //OP_SWAP if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x1 := stack.pop() x2 := stack.pop() stack.push(x1) stack.push(x2) case opcode == 0x7d: //OP_TUCK if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } x1 := stack.pop() x2 := stack.pop() stack.push(x1) stack.push(x2) stack.push(x1) case opcode == 0x82: //OP_SIZE if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.pushInt(int64(len(stack.top(-1)))) case opcode == 0x87 || opcode == 0x88: //OP_EQUAL || OP_EQUALVERIFY if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } a := stack.pop() b := stack.pop() if opcode == 0x88 { //OP_EQUALVERIFY if !bytes.Equal(a, b) { return false } } else { stack.pushBool(bytes.Equal(a, b)) } /* - not handled OP_RESERVED1 = 0x89, OP_RESERVED2 = 0x8a, */ case opcode == 0x8b: //OP_1ADD if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.pushInt(stack.popInt(checkMinVals) + 1) case opcode == 0x8c: //OP_1SUB if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.pushInt(stack.popInt(checkMinVals) - 1) case opcode == 0x8f: //OP_NEGATE if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.pushInt(-stack.popInt(checkMinVals)) case opcode == 0x90: //OP_ABS if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } a := stack.popInt(checkMinVals) if a < 0 { stack.pushInt(-a) } else { stack.pushInt(a) } case opcode == 0x91: //OP_NOT if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } stack.pushBool(stack.popInt(checkMinVals) == 0) case opcode == 0x92: //OP_0NOTEQUAL if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } d := stack.pop() if checkMinVals && len(d) > 1 { if DBG_ERR { fmt.Println("Not minimal bool value", hex.EncodeToString(d)) } return false } stack.pushBool(bts2bool(d)) case opcode == 0x93 || //OP_ADD opcode == 0x94 || //OP_SUB opcode == 0x9a || //OP_BOOLAND opcode == 0x9b || //OP_BOOLOR opcode == 0x9c || opcode == 0x9d || //OP_NUMEQUAL || OP_NUMEQUALVERIFY opcode == 0x9e || //OP_NUMNOTEQUAL opcode == 0x9f || //OP_LESSTHAN opcode == 0xa0 || //OP_GREATERTHAN opcode == 0xa1 || //OP_LESSTHANOREQUAL opcode == 0xa2 || //OP_GREATERTHANOREQUAL opcode == 0xa3 || //OP_MIN opcode == 0xa4: //OP_MAX if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } bn2 := stack.popInt(checkMinVals) bn1 := stack.popInt(checkMinVals) var bn int64 switch opcode { case 0x93: bn = bn1 + bn2 // OP_ADD case 0x94: bn = bn1 - bn2 // OP_SUB case 0x9a: bn = b2i(bn1 != 0 && bn2 != 0) // OP_BOOLAND case 0x9b: bn = b2i(bn1 != 0 || bn2 != 0) // OP_BOOLOR case 0x9c: bn = b2i(bn1 == bn2) // OP_NUMEQUAL case 0x9d: bn = b2i(bn1 == bn2) // OP_NUMEQUALVERIFY case 0x9e: bn = b2i(bn1 != bn2) // OP_NUMNOTEQUAL case 0x9f: bn = b2i(bn1 < bn2) // OP_LESSTHAN case 0xa0: bn = b2i(bn1 > bn2) // OP_GREATERTHAN case 0xa1: bn = b2i(bn1 <= bn2) // OP_LESSTHANOREQUAL case 0xa2: bn = b2i(bn1 >= bn2) // OP_GREATERTHANOREQUAL case 0xa3: // OP_MIN if bn1 < bn2 { bn = bn1 } else { bn = bn2 } case 0xa4: // OP_MAX if bn1 > bn2 { bn = bn1 } else { bn = bn2 } default: panic("invalid opcode") } if opcode == 0x9d { //OP_NUMEQUALVERIFY if bn == 0 { return false } } else { stack.pushInt(bn) } case opcode == 0xa5: //OP_WITHIN if stack.size() < 3 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } bn3 := stack.popInt(checkMinVals) bn2 := stack.popInt(checkMinVals) bn1 := stack.popInt(checkMinVals) stack.pushBool(bn2 <= bn1 && bn1 < bn3) case opcode == 0xa6: //OP_RIPEMD160 if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } rim := ripemd160.New() rim.Write(stack.pop()[:]) stack.push(rim.Sum(nil)[:]) case opcode == 0xa7: //OP_SHA1 if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } sha := sha1.New() sha.Write(stack.pop()[:]) stack.push(sha.Sum(nil)[:]) case opcode == 0xa8: //OP_SHA256 if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } sha := sha256.New() sha.Write(stack.pop()[:]) stack.push(sha.Sum(nil)[:]) case opcode == 0xa9: //OP_HASH160 if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } rim160 := btc.Rimp160AfterSha256(stack.pop()) stack.push(rim160[:]) case opcode == 0xaa: //OP_HASH256 if stack.size() < 1 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } h := btc.Sha2Sum(stack.pop()) stack.push(h[:]) case opcode == 0xab: // OP_CODESEPARATOR sta = idx case opcode == 0xac || opcode == 0xad: // OP_CHECKSIG || OP_CHECKSIGVERIFY if stack.size() < 2 { if DBG_ERR { fmt.Println("Stack too short for opcode", opcode) } return false } var ok bool pk := stack.pop() si := stack.pop() // BIP-0066 if !CheckSignatureEncoding(si, ver_flags) { if DBG_ERR { fmt.Println("Invalid Signature Encoding A") } return false } if len(si) > 0 { sh := tx.SignatureHash(delSig(p[sta:], si), inp, int32(si[len(si)-1])) ok = btc.EcdsaVerify(pk, si, sh) } if !ok && DBG_ERR { if DBG_ERR { fmt.Println("EcdsaVerify fail 1") } } if DBG_SCR { fmt.Println("ver:", ok) } if opcode == 0xad { if !ok { // OP_CHECKSIGVERIFY return false } } else { // OP_CHECKSIG stack.pushBool(ok) } case opcode == 0xae || opcode == 0xaf: //OP_CHECKMULTISIG || OP_CHECKMULTISIGVERIFY //fmt.Println("OP_CHECKMULTISIG ...") //stack.print() if stack.size() < 1 { if DBG_ERR { fmt.Println("OP_CHECKMULTISIG: Stack too short A") } return false } i := 1 keyscnt := stack.topInt(-i, checkMinVals) if keyscnt < 0 || keyscnt > 20 { fmt.Println("OP_CHECKMULTISIG: Wrong number of keys") return false } opcnt += int(keyscnt) if opcnt > 201 { if DBG_ERR { fmt.Println("evalScript: too many opcodes B") } return false } i++ ikey := i i += int(keyscnt) if stack.size() < i { if DBG_ERR { fmt.Println("OP_CHECKMULTISIG: Stack too short B") } return false } sigscnt := stack.topInt(-i, checkMinVals) if sigscnt < 0 || sigscnt > keyscnt { fmt.Println("OP_CHECKMULTISIG: sigscnt error") return false } i++ isig := i i += int(sigscnt) if stack.size() < i { if DBG_ERR { fmt.Println("OP_CHECKMULTISIG: Stack too short C") } return false } xxx := p[sta:] for k := 0; k < int(sigscnt); k++ { xxx = delSig(xxx, stack.top(-isig-k)) } success := true for sigscnt > 0 { pk := stack.top(-ikey) si := stack.top(-isig) // BIP-0066 if !CheckSignatureEncoding(si, ver_flags) { if DBG_ERR { fmt.Println("Invalid Signature Encoding B") } return false } if len(si) > 0 { sh := tx.SignatureHash(xxx, inp, int32(si[len(si)-1])) if btc.EcdsaVerify(pk, si, sh) { isig++ sigscnt-- } } ikey++ keyscnt-- // If there are more signatures left than keys left, // then too many signatures have failed if sigscnt > keyscnt { success = false break } } for i > 0 { i-- stack.pop() } if opcode == 0xaf { if !success { // OP_CHECKMULTISIGVERIFY return false } } else { stack.pushBool(success) } case opcode >= 0xb1: //OP_NOP2 or OP_CHECKLOCKTIMEVERIFY if DBG_SCR { println("OP_NOP2...") } if (ver_flags & VER_CLTV) == 0 { break // Just do NOP2 } if DBG_SCR { println("OP_CHECKLOCKTIMEVERIFY...") } if stack.size() < 1 { if DBG_ERR { fmt.Println("OP_CHECKLOCKTIMEVERIFY: Stack too short") } return false } d := stack.top(-1) if len(d) > 5 { if DBG_ERR { fmt.Println("OP_CHECKLOCKTIMEVERIFY: locktime field too long", len(d)) } return false } if DBG_SCR { fmt.Println("val from stack", hex.EncodeToString(d)) } locktime := bts2int_ext(d, 5, checkMinVals) if locktime < 0 { if DBG_ERR { fmt.Println("OP_CHECKLOCKTIMEVERIFY: negative locktime") } return false } if !((tx.Lock_time < LOCKTIME_THRESHOLD && locktime < LOCKTIME_THRESHOLD) || (tx.Lock_time >= LOCKTIME_THRESHOLD && locktime >= LOCKTIME_THRESHOLD)) { if DBG_ERR { fmt.Println("OP_CHECKLOCKTIMEVERIFY: broken lock value") } return false } if DBG_SCR { println("locktime > int64(tx.Lock_time)", locktime, int64(tx.Lock_time)) println(" ... seq", len(tx.TxIn), inp, tx.TxIn[inp].Sequence) } // Actually compare the specified lock time with the transaction. if locktime > int64(tx.Lock_time) { if DBG_ERR { fmt.Println("OP_CHECKLOCKTIMEVERIFY: Locktime requirement not satisfied") } return false } if tx.TxIn[inp].Sequence == 0xffffffff { if DBG_ERR { fmt.Println("OP_CHECKLOCKTIMEVERIFY: TxIn final") } return false } // OP_CHECKLOCKTIMEVERIFY passed successfully case opcode >= 0xb0 || opcode >= 0xb2 && opcode <= 0xb9: //OP_NOP1 || OP_NOP3..OP_NOP10 // just do nothing default: if DBG_ERR { fmt.Printf("Unhandled opcode 0x%02x - a handler must be implemented\n", opcode) stack.print() fmt.Println("Rest of the script:", hex.EncodeToString(p[idx:])) } return false } } if DBG_SCR { fmt.Printf("Finished Executing opcode 0x%02x\n", opcode) stack.print() } if stack.size()+altstack.size() > 1000 { if DBG_ERR { fmt.Println("Stack too big") } return false } } if DBG_SCR { fmt.Println("END OF SCRIPT") stack.print() } if exestack.size() > 0 { if DBG_ERR { fmt.Println("Unfinished if..") } return false } return true }
func dl_balance(w http.ResponseWriter, r *http.Request) { if !ipchecker(r) { return } if r.Method != "POST" { return } var addrs []string var labels []string if len(r.Form["addrcnt"]) != 1 { println("no addrcnt") return } addrcnt, _ := strconv.ParseUint(r.Form["addrcnt"][0], 10, 32) for i := 0; i < int(addrcnt); i++ { is := fmt.Sprint(i) if len(r.Form["addr"+is]) == 1 { addrs = append(addrs, r.Form["addr"+is][0]) if len(r.Form["label"+is]) == 1 { labels = append(labels, r.Form["label"+is][0]) } else { labels = append(labels, "") } } } type one_unsp_rec struct { btc.TxPrevOut Value uint64 Addr string MinedAt uint32 Coinbase bool } var thisbal chain.AllUnspentTx lck := new(usif.OneLock) lck.In.Add(1) lck.Out.Add(1) usif.LocksChan <- lck lck.In.Wait() for idx, a := range addrs { aa, e := btc.NewAddrFromString(a) aa.Extra.Label = labels[idx] if e == nil { newrecs := wallet.GetAllUnspent(aa) if len(newrecs) > 0 { thisbal = append(thisbal, newrecs...) } /* Segwit P2WPKH: */ if aa.Version == btc.AddrVerPubkey(common.Testnet) { // SegWit if applicable h160 := btc.Rimp160AfterSha256(append([]byte{0, 20}, aa.Hash160[:]...)) aa = btc.NewAddrFromHash160(h160[:], btc.AddrVerScript(common.Testnet)) newrecs = wallet.GetAllUnspent(aa) if len(newrecs) > 0 { thisbal = append(thisbal, newrecs...) } } } } lck.Out.Done() buf := new(bytes.Buffer) zi := zip.NewWriter(buf) was_tx := make(map[[32]byte]bool) sort.Sort(thisbal) for i := range thisbal { if was_tx[thisbal[i].TxPrevOut.Hash] { continue } was_tx[thisbal[i].TxPrevOut.Hash] = true txid := btc.NewUint256(thisbal[i].TxPrevOut.Hash[:]) fz, _ := zi.Create("balance/" + txid.String() + ".tx") if dat, er := common.BlockChain.GetRawTx(thisbal[i].MinedAt, txid); er == nil { fz.Write(dat) } else { println(er.Error()) } } fz, _ := zi.Create("balance/unspent.txt") for i := range thisbal { fmt.Fprintln(fz, thisbal[i].UnspentTextLine()) } zi.Close() w.Header()["Content-Type"] = []string{"application/zip"} w.Write(buf.Bytes()) }
// Get the secret seed and generate "keycnt" key pairs (both private and public) func make_wallet() { var lab string load_others() var seed_key []byte var hdwal *btc.HDWallet defer func() { sys.ClearBuffer(seed_key) if hdwal != nil { sys.ClearBuffer(hdwal.Key) sys.ClearBuffer(hdwal.ChCode) } }() pass := getpass() if pass == nil { cleanExit(0) } if waltype >= 1 && waltype <= 3 { seed_key = make([]byte, 32) btc.ShaHash(pass, seed_key) sys.ClearBuffer(pass) lab = fmt.Sprintf("Typ%c", 'A'+waltype-1) if waltype == 1 { println("WARNING: Wallet Type 1 is obsolete") } else if waltype == 2 { if type2sec != "" { d, e := hex.DecodeString(type2sec) if e != nil { println("t2sec error:", e.Error()) cleanExit(1) } type2_secret = d } else { type2_secret = make([]byte, 20) btc.RimpHash(seed_key, type2_secret) } } } else if waltype == 4 { lab = "TypHD" hdwal = btc.MasterKey(pass, testnet) sys.ClearBuffer(pass) } else { sys.ClearBuffer(pass) println("ERROR: Unsupported wallet type", waltype) cleanExit(1) } if *verbose { fmt.Println("Generating", keycnt, "keys, version", ver_pubkey(), "...") } first_determ_idx = len(keys) for i := uint(0); i < keycnt; { prv_key := make([]byte, 32) if waltype == 3 { btc.ShaHash(seed_key, prv_key) seed_key = append(seed_key, byte(i)) } else if waltype == 2 { seed_key = btc.DeriveNextPrivate(seed_key, type2_secret) copy(prv_key, seed_key) } else if waltype == 1 { btc.ShaHash(seed_key, prv_key) copy(seed_key, prv_key) } else /*if waltype==4*/ { // HD wallet _hd := hdwal.Child(uint32(0x80000000 | i)) copy(prv_key, _hd.Key[1:]) sys.ClearBuffer(_hd.Key) sys.ClearBuffer(_hd.ChCode) } if *scankey != "" { new_stealth_address(prv_key) return } rec := btc.NewPrivateAddr(prv_key, ver_secret(), !uncompressed) if *pubkey != "" && *pubkey == rec.BtcAddr.String() { fmt.Println("Public address:", rec.BtcAddr.String()) fmt.Println("Public hexdump:", hex.EncodeToString(rec.BtcAddr.Pubkey)) return } rec.BtcAddr.Extra.Label = fmt.Sprint(lab, " ", i+1) keys = append(keys, rec) i++ } if *verbose { fmt.Println("Private keys re-generated") } // Calculate SegWit addresses segwit = make([]*btc.BtcAddr, len(keys)) for i, pk := range keys { if len(pk.Pubkey) != 33 { continue } h160 := btc.Rimp160AfterSha256(append([]byte{0, 20}, pk.Hash160[:]...)) segwit[i] = btc.NewAddrFromHash160(h160[:], btc.AddrVerScript(testnet)) } }