// === predict_linear(node model.ValMatrix, k model.ValScalar) Vector === func funcPredictLinear(ev *evaluator, args Expressions) model.Value { vec := funcDeriv(ev, args[0:1]).(vector) duration := model.SampleValue(model.SampleValue(ev.evalFloat(args[1]))) excludedLabels := map[model.LabelName]struct{}{ model.MetricNameLabel: {}, } // Calculate predicted delta over the duration. signatureToDelta := map[uint64]model.SampleValue{} for _, el := range vec { signature := model.SignatureWithoutLabels(el.Metric.Metric, excludedLabels) signatureToDelta[signature] = el.Value * duration } // add predicted delta to last value. matrixBounds := ev.evalMatrixBounds(args[0]) outVec := make(vector, 0, len(signatureToDelta)) for _, samples := range matrixBounds { if len(samples.Values) < 2 { continue } signature := model.SignatureWithoutLabels(samples.Metric.Metric, excludedLabels) delta, ok := signatureToDelta[signature] if ok { samples.Metric.Del(model.MetricNameLabel) outVec = append(outVec, &sample{ Metric: samples.Metric, Value: delta + samples.Values[1].Value, Timestamp: ev.Timestamp, }) } } return outVec }
// === histogram_quantile(k model.ValScalar, vector model.ValVector) Vector === func funcHistogramQuantile(ev *evaluator, args Expressions) model.Value { q := model.SampleValue(ev.evalFloat(args[0])) inVec := ev.evalVector(args[1]) outVec := vector{} signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} for _, el := range inVec { upperBound, err := strconv.ParseFloat( string(el.Metric.Metric[model.BucketLabel]), 64, ) if err != nil { // Oops, no bucket label or malformed label value. Skip. // TODO(beorn7): Issue a warning somehow. continue } signature := model.SignatureWithoutLabels(el.Metric.Metric, excludedLabels) mb, ok := signatureToMetricWithBuckets[signature] if !ok { el.Metric.Del(model.BucketLabel) el.Metric.Del(model.MetricNameLabel) mb = &metricWithBuckets{el.Metric, nil} signatureToMetricWithBuckets[signature] = mb } mb.buckets = append(mb.buckets, bucket{upperBound, el.Value}) } for _, mb := range signatureToMetricWithBuckets { outVec = append(outVec, &sample{ Metric: mb.metric, Value: model.SampleValue(bucketQuantile(q, mb.buckets)), Timestamp: ev.Timestamp, }) } return outVec }