// Ingest puts a tx into the DB atomically. This can result in a // gain, a loss, or no result. Gain or loss in satoshis is returned. func (ts *TxStore) Ingest(tx *wire.MsgTx, height int32) (uint32, error) { var hits uint32 var err error var nUtxoBytes [][]byte // tx has been OK'd by SPV; check tx sanity utilTx := btcutil.NewTx(tx) // convert for validation // checks basic stuff like there are inputs and ouputs err = blockchain.CheckTransactionSanity(utilTx) if err != nil { return hits, err } // note that you can't check signatures; this is SPV. // 0 conf SPV means pretty much nothing. Anyone can say anything. spentOPs := make([][]byte, len(tx.TxIn)) // before entering into db, serialize all inputs of the ingested tx for i, txin := range tx.TxIn { spentOPs[i], err = outPointToBytes(&txin.PreviousOutPoint) if err != nil { return hits, err } } // go through txouts, and then go through addresses to match // generate PKscripts for all addresses wPKscripts := make([][]byte, len(ts.Adrs)) aPKscripts := make([][]byte, len(ts.Adrs)) for i, _ := range ts.Adrs { // iterate through all our addresses // convert regular address to witness address. (split adrs later) wa, err := btcutil.NewAddressWitnessPubKeyHash( ts.Adrs[i].PkhAdr.ScriptAddress(), ts.Param) if err != nil { return hits, err } wPKscripts[i], err = txscript.PayToAddrScript(wa) if err != nil { return hits, err } aPKscripts[i], err = txscript.PayToAddrScript(ts.Adrs[i].PkhAdr) if err != nil { return hits, err } } cachedSha := tx.TxSha() // iterate through all outputs of this tx, see if we gain for i, out := range tx.TxOut { for j, ascr := range aPKscripts { // detect p2wpkh witBool := false if bytes.Equal(out.PkScript, wPKscripts[j]) { witBool = true } if bytes.Equal(out.PkScript, ascr) || witBool { // new utxo found var newu Utxo // create new utxo and copy into it newu.AtHeight = height newu.KeyIdx = ts.Adrs[j].KeyIdx newu.Value = out.Value newu.IsWit = witBool // copy witness version from pkscript var newop wire.OutPoint newop.Hash = cachedSha newop.Index = uint32(i) newu.Op = newop b, err := newu.ToBytes() if err != nil { return hits, err } nUtxoBytes = append(nUtxoBytes, b) hits++ break // txos can match only 1 script } } } err = ts.StateDB.Update(func(btx *bolt.Tx) error { // get all 4 buckets duf := btx.Bucket(BKTUtxos) // sta := btx.Bucket(BKTState) old := btx.Bucket(BKTStxos) txns := btx.Bucket(BKTTxns) if duf == nil || old == nil || txns == nil { return fmt.Errorf("error: db not initialized") } // iterate through duffel bag and look for matches // this makes us lose money, which is regrettable, but we need to know. for _, nOP := range spentOPs { v := duf.Get(nOP) if v != nil { hits++ // do all this just to figure out value we lost x := make([]byte, len(nOP)+len(v)) copy(x, nOP) copy(x[len(nOP):], v) lostTxo, err := UtxoFromBytes(x) if err != nil { return err } // after marking for deletion, save stxo to old bucket var st Stxo // generate spent txo st.Utxo = lostTxo // assign outpoint st.SpendHeight = height // spent at height st.SpendTxid = cachedSha // spent by txid stxb, err := st.ToBytes() // serialize if err != nil { return err } err = old.Put(nOP, stxb) // write nOP:v outpoint:stxo bytes if err != nil { return err } err = duf.Delete(nOP) if err != nil { return err } } } // done losing utxos, next gain utxos // next add all new utxos to db, this is quick as the work is above for _, ub := range nUtxoBytes { err = duf.Put(ub[:36], ub[36:]) if err != nil { return err } } // if hits is nonzero it's a relevant tx and we should store it var buf bytes.Buffer tx.Serialize(&buf) err = txns.Put(cachedSha.Bytes(), buf.Bytes()) if err != nil { return err } return nil }) return hits, err }
// maybeAcceptTransaction is the internal function which implements the public // MaybeAcceptTransaction. See the comment for MaybeAcceptTransaction for // more details. // // This function MUST be called with the mempool lock held (for writes). func (mp *TxPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit, rejectDupOrphans bool) ([]*chainhash.Hash, *TxDesc, error) { txHash := tx.Hash() // Don't accept the transaction if it already exists in the pool. This // applies to orphan transactions as well when the reject duplicate // orphans flag is set. This check is intended to be a quick check to // weed out duplicates. if mp.isTransactionInPool(txHash) || (rejectDupOrphans && mp.isOrphanInPool(txHash)) { str := fmt.Sprintf("already have transaction %v", txHash) return nil, nil, txRuleError(wire.RejectDuplicate, str) } // Perform preliminary sanity checks on the transaction. This makes // use of blockchain which contains the invariant rules for what // transactions are allowed into blocks. err := blockchain.CheckTransactionSanity(tx) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // A standalone transaction must not be a coinbase transaction. if blockchain.IsCoinBase(tx) { str := fmt.Sprintf("transaction %v is an individual coinbase", txHash) return nil, nil, txRuleError(wire.RejectInvalid, str) } // Don't accept transactions with a lock time after the maximum int32 // value for now. This is an artifact of older bitcoind clients which // treated this field as an int32 and would treat anything larger // incorrectly (as negative). if tx.MsgTx().LockTime > math.MaxInt32 { str := fmt.Sprintf("transaction %v has a lock time after "+ "2038 which is not accepted yet", txHash) return nil, nil, txRuleError(wire.RejectNonstandard, str) } // Get the current height of the main chain. A standalone transaction // will be mined into the next block at best, so its height is at least // one more than the current height. bestHeight := mp.cfg.BestHeight() nextBlockHeight := bestHeight + 1 medianTimePast := mp.cfg.MedianTimePast() // Don't allow non-standard transactions if the network parameters // forbid their acceptance. if !mp.cfg.Policy.AcceptNonStd { err = checkTransactionStandard(tx, nextBlockHeight, medianTimePast, mp.cfg.Policy.MinRelayTxFee, mp.cfg.Policy.MaxTxVersion) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v is not standard: %v", txHash, err) return nil, nil, txRuleError(rejectCode, str) } } // The transaction may not use any of the same outputs as other // transactions already in the pool as that would ultimately result in a // double spend. This check is intended to be quick and therefore only // detects double spends within the transaction pool itself. The // transaction could still be double spending coins from the main chain // at this point. There is a more in-depth check that happens later // after fetching the referenced transaction inputs from the main chain // which examines the actual spend data and prevents double spends. err = mp.checkPoolDoubleSpend(tx) if err != nil { return nil, nil, err } // Fetch all of the unspent transaction outputs referenced by the inputs // to this transaction. This function also attempts to fetch the // transaction itself to be used for detecting a duplicate transaction // without needing to do a separate lookup. utxoView, err := mp.fetchInputUtxos(tx) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // Don't allow the transaction if it exists in the main chain and is not // not already fully spent. txEntry := utxoView.LookupEntry(txHash) if txEntry != nil && !txEntry.IsFullySpent() { return nil, nil, txRuleError(wire.RejectDuplicate, "transaction already exists") } delete(utxoView.Entries(), *txHash) // Transaction is an orphan if any of the referenced input transactions // don't exist. Adding orphans to the orphan pool is not handled by // this function, and the caller should use maybeAddOrphan if this // behavior is desired. var missingParents []*chainhash.Hash for originHash, entry := range utxoView.Entries() { if entry == nil || entry.IsFullySpent() { // Must make a copy of the hash here since the iterator // is replaced and taking its address directly would // result in all of the entries pointing to the same // memory location and thus all be the final hash. hashCopy := originHash missingParents = append(missingParents, &hashCopy) } } if len(missingParents) > 0 { return missingParents, nil, nil } // Don't allow the transaction into the mempool unless its sequence // lock is active, meaning that it'll be allowed into the next block // with respect to its defined relative lock times. sequenceLock, err := mp.cfg.CalcSequenceLock(tx, utxoView) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } if !blockchain.SequenceLockActive(sequenceLock, nextBlockHeight, medianTimePast) { return nil, nil, txRuleError(wire.RejectNonstandard, "transaction's sequence locks on inputs not met") } // Perform several checks on the transaction inputs using the invariant // rules in blockchain for what transactions are allowed into blocks. // Also returns the fees associated with the transaction which will be // used later. txFee, err := blockchain.CheckTransactionInputs(tx, nextBlockHeight, utxoView, mp.cfg.ChainParams) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // Don't allow transactions with non-standard inputs if the network // parameters forbid their acceptance. if !mp.cfg.Policy.AcceptNonStd { err := checkInputsStandard(tx, utxoView) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v has a non-standard "+ "input: %v", txHash, err) return nil, nil, txRuleError(rejectCode, str) } } // NOTE: if you modify this code to accept non-standard transactions, // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. // Don't allow transactions with an excessive number of signature // operations which would result in making it impossible to mine. Since // the coinbase address itself can contain signature operations, the // maximum allowed signature operations per transaction is less than // the maximum allowed signature operations per block. // TODO(roasbeef): last bool should be conditional on segwit activation sigOpCost, err := blockchain.GetSigOpCost(tx, false, utxoView, true, true) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } if sigOpCost > mp.cfg.Policy.MaxSigOpCostPerTx { str := fmt.Sprintf("transaction %v sigop cost is too high: %d > %d", txHash, sigOpCost, maxStandardSigOpsCost) return nil, nil, txRuleError(wire.RejectNonstandard, str) } // Don't allow transactions with fees too low to get into a mined block. // // Most miners allow a free transaction area in blocks they mine to go // alongside the area used for high-priority transactions as well as // transactions with fees. A transaction size of up to 1000 bytes is // considered safe to go into this section. Further, the minimum fee // calculated below on its own would encourage several small // transactions to avoid fees rather than one single larger transaction // which is more desirable. Therefore, as long as the size of the // transaction does not exceeed 1000 less than the reserved space for // high-priority transactions, don't require a fee for it. serializedSize := blockchain.GetTxVirtualSize(tx) minFee := calcMinRequiredTxRelayFee(serializedSize, mp.cfg.Policy.MinRelayTxFee) if serializedSize >= (DefaultBlockPrioritySize-1000) && txFee < minFee { str := fmt.Sprintf("transaction %v has %d fees which is under "+ "the required amount of %d", txHash, txFee, minFee) return nil, nil, txRuleError(wire.RejectInsufficientFee, str) } // Require that free transactions have sufficient priority to be mined // in the next block. Transactions which are being added back to the // memory pool from blocks that have been disconnected during a reorg // are exempted. if isNew && !mp.cfg.Policy.DisableRelayPriority && txFee < minFee { currentPriority := mining.CalcPriority(tx.MsgTx(), utxoView, nextBlockHeight) if currentPriority <= mining.MinHighPriority { str := fmt.Sprintf("transaction %v has insufficient "+ "priority (%g <= %g)", txHash, currentPriority, mining.MinHighPriority) return nil, nil, txRuleError(wire.RejectInsufficientFee, str) } } // Free-to-relay transactions are rate limited here to prevent // penny-flooding with tiny transactions as a form of attack. if rateLimit && txFee < minFee { nowUnix := time.Now().Unix() // Decay passed data with an exponentially decaying ~10 minute // window - matches bitcoind handling. mp.pennyTotal *= math.Pow(1.0-1.0/600.0, float64(nowUnix-mp.lastPennyUnix)) mp.lastPennyUnix = nowUnix // Are we still over the limit? if mp.pennyTotal >= mp.cfg.Policy.FreeTxRelayLimit*10*1000 { str := fmt.Sprintf("transaction %v has been rejected "+ "by the rate limiter due to low fees", txHash) return nil, nil, txRuleError(wire.RejectInsufficientFee, str) } oldTotal := mp.pennyTotal mp.pennyTotal += float64(serializedSize) log.Tracef("rate limit: curTotal %v, nextTotal: %v, "+ "limit %v", oldTotal, mp.pennyTotal, mp.cfg.Policy.FreeTxRelayLimit*10*1000) } // Verify crypto signatures for each input and reject the transaction if // any don't verify. err = blockchain.ValidateTransactionScripts(tx, utxoView, txscript.StandardVerifyFlags, mp.cfg.SigCache, mp.cfg.HashCache) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // Add to transaction pool. txD := mp.addTransaction(utxoView, tx, bestHeight, txFee) log.Debugf("Accepted transaction %v (pool size: %v)", txHash, len(mp.pool)) return nil, txD, nil }