// BenchmarkIsCoinBase performs a simple benchmark against the IsCoinBase // function. func BenchmarkIsCoinBase(b *testing.B) { tx, _ := btcutil.NewBlock(&Block100000).Tx(1) b.ResetTimer() for i := 0; i < b.N; i++ { blockchain.IsCoinBase(tx) } }
// NewBlockTemplate returns a new block template that is ready to be solved // using the transactions from the passed transaction source pool and a coinbase // that either pays to the passed address if it is not nil, or a coinbase that // is redeemable by anyone if the passed address is nil. The nil address // functionality is useful since there are cases such as the getblocktemplate // RPC where external mining software is responsible for creating their own // coinbase which will replace the one generated for the block template. Thus // the need to have configured address can be avoided. // // The transactions selected and included are prioritized according to several // factors. First, each transaction has a priority calculated based on its // value, age of inputs, and size. Transactions which consist of larger // amounts, older inputs, and small sizes have the highest priority. Second, a // fee per kilobyte is calculated for each transaction. Transactions with a // higher fee per kilobyte are preferred. Finally, the block generation related // policy settings are all taken into account. // // Transactions which only spend outputs from other transactions already in the // block chain are immediately added to a priority queue which either // prioritizes based on the priority (then fee per kilobyte) or the fee per // kilobyte (then priority) depending on whether or not the BlockPrioritySize // policy setting allots space for high-priority transactions. Transactions // which spend outputs from other transactions in the source pool are added to a // dependency map so they can be added to the priority queue once the // transactions they depend on have been included. // // Once the high-priority area (if configured) has been filled with // transactions, or the priority falls below what is considered high-priority, // the priority queue is updated to prioritize by fees per kilobyte (then // priority). // // When the fees per kilobyte drop below the TxMinFreeFee policy setting, the // transaction will be skipped unless the BlockMinSize policy setting is // nonzero, in which case the block will be filled with the low-fee/free // transactions until the block size reaches that minimum size. // // Any transactions which would cause the block to exceed the BlockMaxSize // policy setting, exceed the maximum allowed signature operations per block, or // otherwise cause the block to be invalid are skipped. // // Given the above, a block generated by this function is of the following form: // // ----------------------------------- -- -- // | Coinbase Transaction | | | // |-----------------------------------| | | // | | | | ----- policy.BlockPrioritySize // | High-priority Transactions | | | // | | | | // |-----------------------------------| | -- // | | | // | | | // | | |--- policy.BlockMaxSize // | Transactions prioritized by fee | | // | until <= policy.TxMinFreeFee | | // | | | // | | | // | | | // |-----------------------------------| | // | Low-fee/Non high-priority (free) | | // | transactions (while block size | | // | <= policy.BlockMinSize) | | // ----------------------------------- -- func (g *BlkTmplGenerator) NewBlockTemplate(payToAddress btcutil.Address) (*BlockTemplate, error) { // Extend the most recently known best block. best := g.chain.BestSnapshot() prevHash := best.Hash nextBlockHeight := best.Height + 1 // Create a standard coinbase transaction paying to the provided // address. NOTE: The coinbase value will be updated to include the // fees from the selected transactions later after they have actually // been selected. It is created here to detect any errors early // before potentially doing a lot of work below. The extra nonce helps // ensure the transaction is not a duplicate transaction (paying the // same value to the same public key address would otherwise be an // identical transaction for block version 1). extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce) if err != nil { return nil, err } // TODO(roasbeef): add witnesss commitment output coinbaseTx, err := createCoinbaseTx(g.chainParams, coinbaseScript, nextBlockHeight, payToAddress) if err != nil { return nil, err } coinbaseSigOpCost := int64(blockchain.CountSigOps(coinbaseTx)) * blockchain.WitnessScaleFactor // Get the current source transactions and create a priority queue to // hold the transactions which are ready for inclusion into a block // along with some priority related and fee metadata. Reserve the same // number of items that are available for the priority queue. Also, // choose the initial sort order for the priority queue based on whether // or not there is an area allocated for high-priority transactions. sourceTxns := g.txSource.MiningDescs() sortedByFee := g.policy.BlockPrioritySize == 0 priorityQueue := newTxPriorityQueue(len(sourceTxns), sortedByFee) // Create a slice to hold the transactions to be included in the // generated block with reserved space. Also create a utxo view to // house all of the input transactions so multiple lookups can be // avoided. blockTxns := make([]*btcutil.Tx, 0, len(sourceTxns)) blockTxns = append(blockTxns, coinbaseTx) blockUtxos := blockchain.NewUtxoViewpoint() // dependers is used to track transactions which depend on another // transaction in the source pool. This, in conjunction with the // dependsOn map kept with each dependent transaction helps quickly // determine which dependent transactions are now eligible for inclusion // in the block once each transaction has been included. dependers := make(map[chainhash.Hash]map[chainhash.Hash]*txPrioItem) // Create slices to hold the fees and number of signature operations // for each of the selected transactions and add an entry for the // coinbase. This allows the code below to simply append details about // a transaction as it is selected for inclusion in the final block. // However, since the total fees aren't known yet, use a dummy value for // the coinbase fee which will be updated later. txFees := make([]int64, 0, len(sourceTxns)) txSigOpCosts := make([]int64, 0, len(sourceTxns)) txFees = append(txFees, -1) // Updated once known txSigOpCosts = append(txSigOpCosts, coinbaseSigOpCost) log.Debugf("Considering %d transactions for inclusion to new block", len(sourceTxns)) mempoolLoop: for _, txDesc := range sourceTxns { // A block can't have more than one coinbase or contain // non-finalized transactions. tx := txDesc.Tx if blockchain.IsCoinBase(tx) { log.Tracef("Skipping coinbase tx %s", tx.Hash()) continue } if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight, g.timeSource.AdjustedTime()) { log.Tracef("Skipping non-finalized tx %s", tx.Hash()) continue } // Fetch all of the utxos referenced by the this transaction. // NOTE: This intentionally does not fetch inputs from the // mempool since a transaction which depends on other // transactions in the mempool must come after those // dependencies in the final generated block. utxos, err := g.chain.FetchUtxoView(tx) if err != nil { log.Warnf("Unable to fetch utxo view for tx %s: %v", tx.Hash(), err) continue } // Setup dependencies for any transactions which reference // other transactions in the mempool so they can be properly // ordered below. prioItem := &txPrioItem{tx: tx} for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index utxoEntry := utxos.LookupEntry(originHash) if utxoEntry == nil || utxoEntry.IsOutputSpent(originIndex) { if !g.txSource.HaveTransaction(originHash) { log.Tracef("Skipping tx %s because it "+ "references unspent output %s "+ "which is not available", tx.Hash(), txIn.PreviousOutPoint) continue mempoolLoop } // The transaction is referencing another // transaction in the source pool, so setup an // ordering dependency. deps, exists := dependers[*originHash] if !exists { deps = make(map[chainhash.Hash]*txPrioItem) dependers[*originHash] = deps } deps[*prioItem.tx.Hash()] = prioItem if prioItem.dependsOn == nil { prioItem.dependsOn = make( map[chainhash.Hash]struct{}) } prioItem.dependsOn[*originHash] = struct{}{} // Skip the check below. We already know the // referenced transaction is available. continue } } // Calculate the final transaction priority using the input // value age sum as well as the adjusted transaction size. The // formula is: sum(inputValue * inputAge) / adjustedTxSize prioItem.priority = CalcPriority(tx.MsgTx(), utxos, nextBlockHeight) // Calculate the fee in Satoshi/kB. // TODO(roasbeef): cost accounting by weight prioItem.feePerKB = txDesc.FeePerKB prioItem.fee = txDesc.Fee // Add the transaction to the priority queue to mark it ready // for inclusion in the block unless it has dependencies. if prioItem.dependsOn == nil { heap.Push(priorityQueue, prioItem) } // Merge the referenced outputs from the input transactions to // this transaction into the block utxo view. This allows the // code below to avoid a second lookup. mergeUtxoView(blockUtxos, utxos) } log.Tracef("Priority queue len %d, dependers len %d", priorityQueue.Len(), len(dependers)) // The starting block size is the size of the block header plus the max // possible transaction count size, plus the size of the coinbase // transaction. blockWeight := uint32((blockHeaderOverhead * blockchain.WitnessScaleFactor) + blockchain.GetTransactionWeight(coinbaseTx)) blockSigOpCost := coinbaseSigOpCost totalFees := int64(0) // Query the version bits state to see if segwit has been activated, if // so then this means that we'll include any transactions with witness // data in the mempool, and also add the witness commitment as an // OP_RETURN output in the coinbase transaction. segwitState, err := g.chain.ThresholdState(chaincfg.DeploymentSegwit) if err != nil { return nil, err } segwitActive := segwitState == blockchain.ThresholdActive witnessIncluded := false // Choose which transactions make it into the block. for priorityQueue.Len() > 0 { // Grab the highest priority (or highest fee per kilobyte // depending on the sort order) transaction. prioItem := heap.Pop(priorityQueue).(*txPrioItem) tx := prioItem.tx switch { // If segregated witness has not been activated yet, then we // shouldn't include any witness transactions in the block. case tx.MsgTx().HasWitness() && !segwitActive: continue // Otherwise, Keep track of if we've included a transaction // with witness data or not. If so, then we'll need to include // the witness commitment as the last output in the coinbase // transaction. case tx.MsgTx().HasWitness() && segwitActive: // If we're about to include a transaction bearing // witness data, then we'll also need to include a // witness commitment in the coinbase transaction. // Therefore, we account for the additional weight // within the block. if !witnessIncluded { // First we account for the additional witness // data in the witness nonce of the coinbaes // transaction: 32-bytes of zeroes. blockWeight += 2 + 32 // Next we account for the additional flag and // marker bytes in the transaction // serialization. blockWeight += (1 + 1) * blockchain.WitnessScaleFactor // Finally we account for the weight of the // additional OP_RETURN output: 8-bytes (value) // + 1-byte (var-int) + 38-bytes (pkScript), // scaling up the weight as it's non-witness // data. blockWeight += (8 + 1 + 38) * blockchain.WitnessScaleFactor } witnessIncluded = true } // Grab any transactions which depend on this one. deps := dependers[*tx.Hash()] // Enforce maximum block size. Also check for overflow. txWeight := uint32(blockchain.GetTransactionWeight(tx)) blockPlusTxWeight := uint32(blockWeight + txWeight) if blockPlusTxWeight < blockWeight || blockPlusTxWeight >= g.policy.BlockMaxWeight { log.Tracef("Skipping tx %s because it would exceed "+ "the max block weight", tx.Hash()) logSkippedDeps(tx, deps) continue } // Enforce maximum signature operation cost per block. Also // check for overflow. sigOpCost, err := blockchain.GetSigOpCost(tx, false, blockUtxos, true, segwitActive) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "GetSigOpCost: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } if blockSigOpCost+int64(sigOpCost) < blockSigOpCost || blockSigOpCost+int64(sigOpCost) > blockchain.MaxBlockSigOpsCost { log.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block", tx.Hash()) logSkippedDeps(tx, deps) continue } // Skip free transactions once the block is larger than the // minimum block size. if sortedByFee && prioItem.feePerKB < int64(g.policy.TxMinFreeFee) && blockPlusTxWeight >= g.policy.BlockMinWeight { log.Tracef("Skipping tx %s with feePerKB %d "+ "< TxMinFreeFee %d and block weight %d >= "+ "minBlockWeight %d", tx.Hash(), prioItem.feePerKB, g.policy.TxMinFreeFee, blockPlusTxWeight, g.policy.BlockMinWeight) logSkippedDeps(tx, deps) continue } // Prioritize by fee per kilobyte once the block is larger than // the priority size or there are no more high-priority // transactions. if !sortedByFee && (blockPlusTxWeight >= g.policy.BlockPrioritySize || prioItem.priority <= MinHighPriority) { log.Tracef("Switching to sort by fees per "+ "kilobyte blockSize %d >= BlockPrioritySize "+ "%d || priority %.2f <= minHighPriority %.2f", blockPlusTxWeight, g.policy.BlockPrioritySize, prioItem.priority, MinHighPriority) sortedByFee = true priorityQueue.SetLessFunc(txPQByFee) // Put the transaction back into the priority queue and // skip it so it is re-priortized by fees if it won't // fit into the high-priority section or the priority // is too low. Otherwise this transaction will be the // final one in the high-priority section, so just fall // though to the code below so it is added now. if blockPlusTxWeight > g.policy.BlockPrioritySize || prioItem.priority < MinHighPriority { heap.Push(priorityQueue, prioItem) continue } } // Ensure the transaction inputs pass all of the necessary // preconditions before allowing it to be added to the block. _, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight, blockUtxos, g.chainParams) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "CheckTransactionInputs: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } err = blockchain.ValidateTransactionScripts(tx, blockUtxos, txscript.StandardVerifyFlags, g.sigCache, g.hashCache) if err != nil { log.Tracef("Skipping tx %s due to error in "+ "ValidateTransactionScripts: %v", tx.Hash(), err) logSkippedDeps(tx, deps) continue } // Spend the transaction inputs in the block utxo view and add // an entry for it to ensure any transactions which reference // this one have it available as an input and can ensure they // aren't double spending. spendTransaction(blockUtxos, tx, nextBlockHeight) // Add the transaction to the block, increment counters, and // save the fees and signature operation counts to the block // template. blockTxns = append(blockTxns, tx) blockWeight += txWeight blockSigOpCost += int64(sigOpCost) totalFees += prioItem.fee txFees = append(txFees, prioItem.fee) txSigOpCosts = append(txSigOpCosts, int64(sigOpCost)) log.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)", prioItem.tx.Hash(), prioItem.priority, prioItem.feePerKB) // Add transactions which depend on this one (and also do not // have any other unsatisified dependencies) to the priority // queue. for _, item := range deps { // Add the transaction to the priority queue if there // are no more dependencies after this one. delete(item.dependsOn, *tx.Hash()) if len(item.dependsOn) == 0 { heap.Push(priorityQueue, item) } } } // Now that the actual transactions have been selected, update the // block weight for the real transaction count and coinbase value with // the total fees accordingly. blockWeight -= wire.MaxVarIntPayload - (uint32(wire.VarIntSerializeSize(uint64(len(blockTxns)))) * blockchain.WitnessScaleFactor) coinbaseTx.MsgTx().TxOut[0].Value += totalFees txFees[0] = -totalFees // If segwit is active and we included transactions with witness data, // then we'll need to include a commitment to the witness data in an // OP_RETURN output within the coinbase transaction. if witnessIncluded { // The witness of the coinbase transaction MUST be exactly 32-bytes // of all zeroes. var witnessNonce [blockchain.CoinbaseWitnessDataLen]byte coinbaseTx.MsgTx().TxIn[0].Witness = wire.TxWitness{witnessNonce[:]} // Next, obtain the merkle root of a tree which consists of the // wtxid of all transactions in the block. The coinbase // transaction will have a special wtxid of all zeroes. witnessMerkleTree := blockchain.BuildMerkleTreeStore(blockTxns, true) witnessMerkleRoot := witnessMerkleTree[len(witnessMerkleTree)-1] // The preimage to the witness commitment is: // witnessRoot || coinbaseWitness var witnessPreimage [64]byte copy(witnessPreimage[:32], witnessMerkleRoot[:]) copy(witnessPreimage[32:], witnessNonce[:]) // The witness commitment itself is the double-sha256 of the // witness preimage generated above. With the commitment // generated, the witness script for the output is: OP_RETURN // OP_DATA_36 {0xaa21a9ed || witnessCommitment}. The leading // prefix is refered to as the "witness magic bytes". witnessCommitment := chainhash.DoubleHashB(witnessPreimage[:]) witnessScript := append(blockchain.WitnessMagicBytes, witnessCommitment...) // Finally, create the OP_RETURN carrying witness commitment // output as an additional output within the coinbase. commitmentOutput := &wire.TxOut{ Value: 0, PkScript: witnessScript, } coinbaseTx.MsgTx().TxOut = append(coinbaseTx.MsgTx().TxOut, commitmentOutput) } // Calculate the required difficulty for the block. The timestamp // is potentially adjusted to ensure it comes after the median time of // the last several blocks per the chain consensus rules. ts := medianAdjustedTime(best, g.timeSource) reqDifficulty, err := g.chain.CalcNextRequiredDifficulty(ts) if err != nil { return nil, err } // Calculate the next expected block version based on the state of the // rule change deployments. nextBlockVersion, err := g.chain.CalcNextBlockVersion() if err != nil { return nil, err } // Create a new block ready to be solved. merkles := blockchain.BuildMerkleTreeStore(blockTxns, false) var msgBlock wire.MsgBlock msgBlock.Header = wire.BlockHeader{ Version: nextBlockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: reqDifficulty, } for _, tx := range blockTxns { if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } // Finally, perform a full check on the created block against the chain // consensus rules to ensure it properly connects to the current best // chain with no issues. block := btcutil.NewBlock(&msgBlock) block.SetHeight(nextBlockHeight) if err := g.chain.CheckConnectBlock(block); err != nil { return nil, err } log.Debugf("Created new block template (%d transactions, %d in "+ "fees, %d signature operations cost, %d weight, target difficulty "+ "%064x)", len(msgBlock.Transactions), totalFees, blockSigOpCost, blockWeight, blockchain.CompactToBig(msgBlock.Header.Bits)) return &BlockTemplate{ Block: &msgBlock, Fees: txFees, SigOpCosts: txSigOpCosts, Height: nextBlockHeight, ValidPayAddress: payToAddress != nil, }, nil }
// maybeAcceptTransaction is the internal function which implements the public // MaybeAcceptTransaction. See the comment for MaybeAcceptTransaction for // more details. // // This function MUST be called with the mempool lock held (for writes). func (mp *TxPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit, rejectDupOrphans bool) ([]*chainhash.Hash, *TxDesc, error) { txHash := tx.Hash() // Don't accept the transaction if it already exists in the pool. This // applies to orphan transactions as well when the reject duplicate // orphans flag is set. This check is intended to be a quick check to // weed out duplicates. if mp.isTransactionInPool(txHash) || (rejectDupOrphans && mp.isOrphanInPool(txHash)) { str := fmt.Sprintf("already have transaction %v", txHash) return nil, nil, txRuleError(wire.RejectDuplicate, str) } // Perform preliminary sanity checks on the transaction. This makes // use of blockchain which contains the invariant rules for what // transactions are allowed into blocks. err := blockchain.CheckTransactionSanity(tx) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // A standalone transaction must not be a coinbase transaction. if blockchain.IsCoinBase(tx) { str := fmt.Sprintf("transaction %v is an individual coinbase", txHash) return nil, nil, txRuleError(wire.RejectInvalid, str) } // Don't accept transactions with a lock time after the maximum int32 // value for now. This is an artifact of older bitcoind clients which // treated this field as an int32 and would treat anything larger // incorrectly (as negative). if tx.MsgTx().LockTime > math.MaxInt32 { str := fmt.Sprintf("transaction %v has a lock time after "+ "2038 which is not accepted yet", txHash) return nil, nil, txRuleError(wire.RejectNonstandard, str) } // Get the current height of the main chain. A standalone transaction // will be mined into the next block at best, so its height is at least // one more than the current height. bestHeight := mp.cfg.BestHeight() nextBlockHeight := bestHeight + 1 medianTimePast := mp.cfg.MedianTimePast() // Don't allow non-standard transactions if the network parameters // forbid their acceptance. if !mp.cfg.Policy.AcceptNonStd { err = checkTransactionStandard(tx, nextBlockHeight, medianTimePast, mp.cfg.Policy.MinRelayTxFee, mp.cfg.Policy.MaxTxVersion) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v is not standard: %v", txHash, err) return nil, nil, txRuleError(rejectCode, str) } } // The transaction may not use any of the same outputs as other // transactions already in the pool as that would ultimately result in a // double spend. This check is intended to be quick and therefore only // detects double spends within the transaction pool itself. The // transaction could still be double spending coins from the main chain // at this point. There is a more in-depth check that happens later // after fetching the referenced transaction inputs from the main chain // which examines the actual spend data and prevents double spends. err = mp.checkPoolDoubleSpend(tx) if err != nil { return nil, nil, err } // Fetch all of the unspent transaction outputs referenced by the inputs // to this transaction. This function also attempts to fetch the // transaction itself to be used for detecting a duplicate transaction // without needing to do a separate lookup. utxoView, err := mp.fetchInputUtxos(tx) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // Don't allow the transaction if it exists in the main chain and is not // not already fully spent. txEntry := utxoView.LookupEntry(txHash) if txEntry != nil && !txEntry.IsFullySpent() { return nil, nil, txRuleError(wire.RejectDuplicate, "transaction already exists") } delete(utxoView.Entries(), *txHash) // Transaction is an orphan if any of the referenced input transactions // don't exist. Adding orphans to the orphan pool is not handled by // this function, and the caller should use maybeAddOrphan if this // behavior is desired. var missingParents []*chainhash.Hash for originHash, entry := range utxoView.Entries() { if entry == nil || entry.IsFullySpent() { // Must make a copy of the hash here since the iterator // is replaced and taking its address directly would // result in all of the entries pointing to the same // memory location and thus all be the final hash. hashCopy := originHash missingParents = append(missingParents, &hashCopy) } } if len(missingParents) > 0 { return missingParents, nil, nil } // Don't allow the transaction into the mempool unless its sequence // lock is active, meaning that it'll be allowed into the next block // with respect to its defined relative lock times. sequenceLock, err := mp.cfg.CalcSequenceLock(tx, utxoView) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } if !blockchain.SequenceLockActive(sequenceLock, nextBlockHeight, medianTimePast) { return nil, nil, txRuleError(wire.RejectNonstandard, "transaction's sequence locks on inputs not met") } // Perform several checks on the transaction inputs using the invariant // rules in blockchain for what transactions are allowed into blocks. // Also returns the fees associated with the transaction which will be // used later. txFee, err := blockchain.CheckTransactionInputs(tx, nextBlockHeight, utxoView, mp.cfg.ChainParams) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // Don't allow transactions with non-standard inputs if the network // parameters forbid their acceptance. if !mp.cfg.Policy.AcceptNonStd { err := checkInputsStandard(tx, utxoView) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v has a non-standard "+ "input: %v", txHash, err) return nil, nil, txRuleError(rejectCode, str) } } // NOTE: if you modify this code to accept non-standard transactions, // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. // Don't allow transactions with an excessive number of signature // operations which would result in making it impossible to mine. Since // the coinbase address itself can contain signature operations, the // maximum allowed signature operations per transaction is less than // the maximum allowed signature operations per block. // TODO(roasbeef): last bool should be conditional on segwit activation sigOpCost, err := blockchain.GetSigOpCost(tx, false, utxoView, true, true) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } if sigOpCost > mp.cfg.Policy.MaxSigOpCostPerTx { str := fmt.Sprintf("transaction %v sigop cost is too high: %d > %d", txHash, sigOpCost, maxStandardSigOpsCost) return nil, nil, txRuleError(wire.RejectNonstandard, str) } // Don't allow transactions with fees too low to get into a mined block. // // Most miners allow a free transaction area in blocks they mine to go // alongside the area used for high-priority transactions as well as // transactions with fees. A transaction size of up to 1000 bytes is // considered safe to go into this section. Further, the minimum fee // calculated below on its own would encourage several small // transactions to avoid fees rather than one single larger transaction // which is more desirable. Therefore, as long as the size of the // transaction does not exceeed 1000 less than the reserved space for // high-priority transactions, don't require a fee for it. serializedSize := blockchain.GetTxVirtualSize(tx) minFee := calcMinRequiredTxRelayFee(serializedSize, mp.cfg.Policy.MinRelayTxFee) if serializedSize >= (DefaultBlockPrioritySize-1000) && txFee < minFee { str := fmt.Sprintf("transaction %v has %d fees which is under "+ "the required amount of %d", txHash, txFee, minFee) return nil, nil, txRuleError(wire.RejectInsufficientFee, str) } // Require that free transactions have sufficient priority to be mined // in the next block. Transactions which are being added back to the // memory pool from blocks that have been disconnected during a reorg // are exempted. if isNew && !mp.cfg.Policy.DisableRelayPriority && txFee < minFee { currentPriority := mining.CalcPriority(tx.MsgTx(), utxoView, nextBlockHeight) if currentPriority <= mining.MinHighPriority { str := fmt.Sprintf("transaction %v has insufficient "+ "priority (%g <= %g)", txHash, currentPriority, mining.MinHighPriority) return nil, nil, txRuleError(wire.RejectInsufficientFee, str) } } // Free-to-relay transactions are rate limited here to prevent // penny-flooding with tiny transactions as a form of attack. if rateLimit && txFee < minFee { nowUnix := time.Now().Unix() // Decay passed data with an exponentially decaying ~10 minute // window - matches bitcoind handling. mp.pennyTotal *= math.Pow(1.0-1.0/600.0, float64(nowUnix-mp.lastPennyUnix)) mp.lastPennyUnix = nowUnix // Are we still over the limit? if mp.pennyTotal >= mp.cfg.Policy.FreeTxRelayLimit*10*1000 { str := fmt.Sprintf("transaction %v has been rejected "+ "by the rate limiter due to low fees", txHash) return nil, nil, txRuleError(wire.RejectInsufficientFee, str) } oldTotal := mp.pennyTotal mp.pennyTotal += float64(serializedSize) log.Tracef("rate limit: curTotal %v, nextTotal: %v, "+ "limit %v", oldTotal, mp.pennyTotal, mp.cfg.Policy.FreeTxRelayLimit*10*1000) } // Verify crypto signatures for each input and reject the transaction if // any don't verify. err = blockchain.ValidateTransactionScripts(tx, utxoView, txscript.StandardVerifyFlags, mp.cfg.SigCache, mp.cfg.HashCache) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, nil, chainRuleError(cerr) } return nil, nil, err } // Add to transaction pool. txD := mp.addTransaction(utxoView, tx, bestHeight, txFee) log.Debugf("Accepted transaction %v (pool size: %v)", txHash, len(mp.pool)) return nil, txD, nil }