func makeInputSource(eligible []wtxmgr.Credit) txauthor.InputSource { // Pick largest outputs first. This is only done for compatibility with // previous tx creation code, not because it's a good idea. sort.Sort(sort.Reverse(byAmount(eligible))) // Current inputs and their total value. These are closed over by the // returned input source and reused across multiple calls. currentTotal := btcutil.Amount(0) currentInputs := make([]*wire.TxIn, 0, len(eligible)) currentScripts := make([][]byte, 0, len(eligible)) currentInputValues := make([]btcutil.Amount, 0, len(eligible)) return func(target btcutil.Amount) (btcutil.Amount, []*wire.TxIn, []btcutil.Amount, [][]byte, error) { for currentTotal < target && len(eligible) != 0 { nextCredit := &eligible[0] eligible = eligible[1:] nextInput := wire.NewTxIn(&nextCredit.OutPoint, nil, nil) currentTotal += nextCredit.Amount currentInputs = append(currentInputs, nextInput) currentScripts = append(currentScripts, nextCredit.PkScript) currentInputValues = append(currentInputValues, nextCredit.Amount) } return currentTotal, currentInputs, currentInputValues, currentScripts, nil } }
// selectCoinsAndChange performs coin selection in order to obtain witness // outputs which sum to at least 'numCoins' amount of satoshis. If coin // selection is successful/possible, then the selected coins are available // within the passed contribution's inputs. If necessary, a change address will // also be generated. // TODO(roasbeef): remove hardcoded fees and req'd confs for outputs. func (l *LightningWallet) selectCoinsAndChange(feeRate uint64, amt btcutil.Amount, contribution *ChannelContribution) error { // We hold the coin select mutex while querying for outputs, and // performing coin selection in order to avoid inadvertent double // spends across funding transactions. l.coinSelectMtx.Lock() defer l.coinSelectMtx.Unlock() // Find all unlocked unspent witness outputs with greater than 1 // confirmation. // TODO(roasbeef): make num confs a configuration paramter coins, err := l.ListUnspentWitness(1) if err != nil { return err } // Perform coin selection over our available, unlocked unspent outputs // in order to find enough coins to meet the funding amount // requirements. selectedCoins, changeAmt, err := coinSelect(feeRate, amt, coins) if err != nil { return err } // Lock the selected coins. These coins are now "reserved", this // prevents concurrent funding requests from referring to and this // double-spending the same set of coins. contribution.Inputs = make([]*wire.TxIn, len(selectedCoins)) for i, coin := range selectedCoins { l.lockedOutPoints[*coin] = struct{}{} l.LockOutpoint(*coin) // Empty sig script, we'll actually sign if this reservation is // queued up to be completed (the other side accepts). contribution.Inputs[i] = wire.NewTxIn(coin, nil, nil) } // Record any change output(s) generated as a result of the coin // selection. if changeAmt != 0 { changeAddr, err := l.NewAddress(WitnessPubKey, true) if err != nil { return err } changeScript, err := txscript.PayToAddrScript(changeAddr) if err != nil { return err } contribution.ChangeOutputs = make([]*wire.TxOut, 1) contribution.ChangeOutputs[0] = &wire.TxOut{ Value: int64(changeAmt), PkScript: changeScript, } } return nil }
// createSpendTx generates a basic spending transaction given the passed // signature, witness and public key scripts. func createSpendingTx(witness [][]byte, sigScript, pkScript []byte, outputValue int64) *wire.MsgTx { coinbaseTx := wire.NewMsgTx(wire.TxVersion) outPoint := wire.NewOutPoint(&chainhash.Hash{}, ^uint32(0)) txIn := wire.NewTxIn(outPoint, []byte{OP_0, OP_0}, nil) txOut := wire.NewTxOut(outputValue, pkScript) coinbaseTx.AddTxIn(txIn) coinbaseTx.AddTxOut(txOut) spendingTx := wire.NewMsgTx(wire.TxVersion) coinbaseTxSha := coinbaseTx.TxHash() outPoint = wire.NewOutPoint(&coinbaseTxSha, 0) txIn = wire.NewTxIn(outPoint, sigScript, witness) txOut = wire.NewTxOut(outputValue, nil) spendingTx.AddTxIn(txIn) spendingTx.AddTxOut(txOut) return spendingTx }
// toMsgTx generates a btcwire.MsgTx with this tx's inputs and outputs. func (tx *withdrawalTx) toMsgTx() *wire.MsgTx { msgtx := wire.NewMsgTx() for _, o := range tx.outputs { msgtx.AddTxOut(wire.NewTxOut(int64(o.amount), o.pkScript())) } if tx.hasChange() { msgtx.AddTxOut(tx.changeOutput) } for _, i := range tx.inputs { msgtx.AddTxIn(wire.NewTxIn(&i.OutPoint, []byte{})) } return msgtx }
func makeInputSource(unspents []*wire.TxOut) InputSource { // Return outputs in order. currentTotal := btcutil.Amount(0) currentInputs := make([]*wire.TxIn, 0, len(unspents)) f := func(target btcutil.Amount) (btcutil.Amount, []*wire.TxIn, [][]byte, error) { for currentTotal < target && len(unspents) != 0 { u := unspents[0] unspents = unspents[1:] nextInput := wire.NewTxIn(&wire.OutPoint{}, nil) currentTotal += btcutil.Amount(u.Value) currentInputs = append(currentInputs, nextInput) } return currentTotal, currentInputs, make([][]byte, len(currentInputs)), nil } return InputSource(f) }
// makeInputSource creates an InputSource that creates inputs for every unspent // output with non-zero output values. The target amount is ignored since every // output is consumed. The InputSource does not return any previous output // scripts as they are not needed for creating the unsinged transaction and are // looked up again by the wallet during the call to signrawtransaction. func makeInputSource(outputs []btcjson.ListUnspentResult) txauthor.InputSource { var ( totalInputValue btcutil.Amount inputs = make([]*wire.TxIn, 0, len(outputs)) sourceErr error ) for _, output := range outputs { outputAmount, err := btcutil.NewAmount(output.Amount) if err != nil { sourceErr = fmt.Errorf( "invalid amount `%v` in listunspent result", output.Amount) break } if outputAmount == 0 { continue } if !saneOutputValue(outputAmount) { sourceErr = fmt.Errorf( "impossible output amount `%v` in listunspent result", outputAmount) break } totalInputValue += outputAmount previousOutPoint, err := parseOutPoint(&output) if err != nil { sourceErr = fmt.Errorf( "invalid data in listunspent result: %v", err) break } inputs = append(inputs, wire.NewTxIn(&previousOutPoint, nil)) } if sourceErr == nil && totalInputValue == 0 { sourceErr = noInputValue{} } return func(btcutil.Amount) (btcutil.Amount, []*wire.TxIn, [][]byte, error) { return totalInputValue, inputs, nil, sourceErr } }
// handleSingleFunderSigs is called once the remote peer who initiated the // single funder workflow has assembled the funding transaction, and generated // a signature for our version of the commitment transaction. This method // progresses the workflow by generating a signature for the remote peer's // version of the commitment transaction. func (l *LightningWallet) handleSingleFunderSigs(req *addSingleFunderSigsMsg) { l.limboMtx.RLock() pendingReservation, ok := l.fundingLimbo[req.pendingFundingID] l.limboMtx.RUnlock() if !ok { req.err <- fmt.Errorf("attempted to update non-existant funding state") return } // Grab the mutex on the ChannelReservation to ensure thead-safety pendingReservation.Lock() defer pendingReservation.Unlock() pendingReservation.partialState.FundingOutpoint = req.fundingOutpoint pendingReservation.partialState.TheirCurrentRevocation = req.revokeKey pendingReservation.partialState.ChanID = req.fundingOutpoint fundingTxIn := wire.NewTxIn(req.fundingOutpoint, nil, nil) // Now that we have the funding outpoint, we can generate both versions // of the commitment transaction, and generate a signature for the // remote node's commitment transactions. ourCommitKey := pendingReservation.ourContribution.CommitKey theirCommitKey := pendingReservation.theirContribution.CommitKey ourBalance := pendingReservation.ourContribution.FundingAmount theirBalance := pendingReservation.theirContribution.FundingAmount ourCommitTx, err := CreateCommitTx(fundingTxIn, ourCommitKey, theirCommitKey, pendingReservation.ourContribution.RevocationKey, pendingReservation.ourContribution.CsvDelay, ourBalance, theirBalance) if err != nil { req.err <- err return } theirCommitTx, err := CreateCommitTx(fundingTxIn, theirCommitKey, ourCommitKey, req.revokeKey, pendingReservation.theirContribution.CsvDelay, theirBalance, ourBalance) if err != nil { req.err <- err return } // Sort both transactions according to the agreed upon cannonical // ordering. This ensures that both parties sign the same sighash // without further synchronization. txsort.InPlaceSort(ourCommitTx) pendingReservation.partialState.OurCommitTx = ourCommitTx txsort.InPlaceSort(theirCommitTx) witnessScript := pendingReservation.partialState.FundingWitnessScript channelValue := int64(pendingReservation.partialState.Capacity) hashCache := txscript.NewTxSigHashes(ourCommitTx) theirKey := pendingReservation.theirContribution.MultiSigKey ourKey := pendingReservation.partialState.OurMultiSigKey sigHash, err := txscript.CalcWitnessSigHash(witnessScript, hashCache, txscript.SigHashAll, ourCommitTx, 0, channelValue) if err != nil { req.err <- err return } // Verify that we've received a valid signature from the remote party // for our version of the commitment transaction. sig, err := btcec.ParseSignature(req.theirCommitmentSig, btcec.S256()) if err != nil { req.err <- err return } else if !sig.Verify(sigHash, theirKey) { req.err <- fmt.Errorf("counterparty's commitment signature is invalid") return } pendingReservation.partialState.OurCommitSig = req.theirCommitmentSig // With their signature for our version of the commitment transactions // verified, we can now generate a signature for their version, // allowing the funding transaction to be safely broadcast. p2wsh, err := witnessScriptHash(witnessScript) if err != nil { req.err <- err return } signDesc := SignDescriptor{ WitnessScript: witnessScript, PubKey: ourKey, Output: &wire.TxOut{ PkScript: p2wsh, Value: channelValue, }, HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(theirCommitTx), InputIndex: 0, } sigTheirCommit, err := l.Signer.SignOutputRaw(theirCommitTx, &signDesc) if err != nil { req.err <- err return } pendingReservation.ourCommitmentSig = sigTheirCommit req.err <- nil }
// fundTx attempts to fund a transaction sending amt bitcoin. The coins are // selected such that the final amount spent pays enough fees as dictated by // the passed fee rate. The passed fee rate should be expressed in // satoshis-per-byte. // // NOTE: The memWallet's mutex must be held when this function is called. func (m *memWallet) fundTx(tx *wire.MsgTx, amt btcutil.Amount, feeRate btcutil.Amount) error { const ( // spendSize is the largest number of bytes of a sigScript // which spends a p2pkh output: OP_DATA_73 <sig> OP_DATA_33 <pubkey> spendSize = 1 + 73 + 1 + 33 ) var ( amtSelected btcutil.Amount txSize int ) for outPoint, utxo := range m.utxos { // Skip any outputs that are still currently immature or are // currently locked. if !utxo.isMature(m.currentHeight) || utxo.isLocked { continue } amtSelected += utxo.value // Add the selected output to the transaction, updating the // current tx size while accounting for the size of the future // sigScript. tx.AddTxIn(wire.NewTxIn(&outPoint, nil, nil)) txSize = tx.SerializeSize() + spendSize*len(tx.TxIn) // Calculate the fee required for the txn at this point // observing the specified fee rate. If we don't have enough // coins from he current amount selected to pay the fee, then // continue to grab more coins. reqFee := btcutil.Amount(txSize * int(feeRate)) if amtSelected-reqFee < amt { continue } // If we have any change left over, then add an additional // output to the transaction reserved for change. changeVal := amtSelected - amt - reqFee if changeVal > 0 { addr, err := m.newAddress() if err != nil { return err } pkScript, err := txscript.PayToAddrScript(addr) if err != nil { return err } changeOutput := &wire.TxOut{ Value: int64(changeVal), PkScript: pkScript, } tx.AddTxOut(changeOutput) } return nil } // If we've reached this point, then coin selection failed due to an // insufficient amount of coins. return fmt.Errorf("not enough funds for coin selection") }
// This example demonstrates manually creating and signing a redeem transaction. func ExampleSignTxOutput() { // Ordinarily the private key would come from whatever storage mechanism // is being used, but for this example just hard code it. privKeyBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2" + "d4f8720ee63e502ee2869afab7de234b80c") if err != nil { fmt.Println(err) return } privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes) pubKeyHash := btcutil.Hash160(pubKey.SerializeCompressed()) addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash, &chaincfg.MainNetParams) if err != nil { fmt.Println(err) return } // For this example, create a fake transaction that represents what // would ordinarily be the real transaction that is being spent. It // contains a single output that pays to address in the amount of 1 BTC. originTx := wire.NewMsgTx(wire.TxVersion) prevOut := wire.NewOutPoint(&chainhash.Hash{}, ^uint32(0)) txIn := wire.NewTxIn(prevOut, []byte{txscript.OP_0, txscript.OP_0}, nil) originTx.AddTxIn(txIn) pkScript, err := txscript.PayToAddrScript(addr) if err != nil { fmt.Println(err) return } txOut := wire.NewTxOut(100000000, pkScript) originTx.AddTxOut(txOut) originTxHash := originTx.TxHash() // Create the transaction to redeem the fake transaction. redeemTx := wire.NewMsgTx(wire.TxVersion) // Add the input(s) the redeeming transaction will spend. There is no // signature script at this point since it hasn't been created or signed // yet, hence nil is provided for it. prevOut = wire.NewOutPoint(&originTxHash, 0) txIn = wire.NewTxIn(prevOut, nil, nil) redeemTx.AddTxIn(txIn) // Ordinarily this would contain that actual destination of the funds, // but for this example don't bother. txOut = wire.NewTxOut(0, nil) redeemTx.AddTxOut(txOut) // Sign the redeeming transaction. lookupKey := func(a btcutil.Address) (*btcec.PrivateKey, bool, error) { // Ordinarily this function would involve looking up the private // key for the provided address, but since the only thing being // signed in this example uses the address associated with the // private key from above, simply return it with the compressed // flag set since the address is using the associated compressed // public key. // // NOTE: If you want to prove the code is actually signing the // transaction properly, uncomment the following line which // intentionally returns an invalid key to sign with, which in // turn will result in a failure during the script execution // when verifying the signature. // // privKey.D.SetInt64(12345) // return privKey, true, nil } // Notice that the script database parameter is nil here since it isn't // used. It must be specified when pay-to-script-hash transactions are // being signed. sigScript, err := txscript.SignTxOutput(&chaincfg.MainNetParams, redeemTx, 0, originTx.TxOut[0].PkScript, txscript.SigHashAll, txscript.KeyClosure(lookupKey), nil, nil) if err != nil { fmt.Println(err) return } redeemTx.TxIn[0].SignatureScript = sigScript // Prove that the transaction has been validly signed by executing the // script pair. flags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures | txscript.ScriptStrictMultiSig | txscript.ScriptDiscourageUpgradableNops vm, err := txscript.NewEngine(originTx.TxOut[0].PkScript, redeemTx, 0, flags, nil, nil, -1) if err != nil { fmt.Println(err) return } if err := vm.Execute(); err != nil { fmt.Println(err) return } fmt.Println("Transaction successfully signed") // Output: // Transaction successfully signed }
func testDualFundingReservationWorkflow(miner *rpctest.Harness, wallet *lnwallet.LightningWallet, t *testing.T) { t.Log("Running dual reservation workflow test") // Create the bob-test wallet which will be the other side of our funding // channel. fundingAmount := btcutil.Amount(5 * 1e8) bobNode, err := newBobNode(miner, fundingAmount) if err != nil { t.Fatalf("unable to create bob node: %v", err) } // Bob initiates a channel funded with 5 BTC for each side, so 10 // BTC total. He also generates 2 BTC in change. chanReservation, err := wallet.InitChannelReservation(fundingAmount*2, fundingAmount, bobNode.id, bobAddr, numReqConfs, 4) if err != nil { t.Fatalf("unable to initialize funding reservation: %v", err) } // The channel reservation should now be populated with a multi-sig key // from our HD chain, a change output with 3 BTC, and 2 outputs selected // of 4 BTC each. Additionally, the rest of the items needed to fufill a // funding contribution should also have been filled in. ourContribution := chanReservation.OurContribution() if len(ourContribution.Inputs) != 2 { t.Fatalf("outputs for funding tx not properly selected, have %v "+ "outputs should have 2", len(ourContribution.Inputs)) } if ourContribution.MultiSigKey == nil { t.Fatalf("alice's key for multi-sig not found") } if ourContribution.CommitKey == nil { t.Fatalf("alice's key for commit not found") } if ourContribution.DeliveryAddress == nil { t.Fatalf("alice's final delivery address not found") } if ourContribution.CsvDelay == 0 { t.Fatalf("csv delay not set") } // Bob sends over his output, change addr, pub keys, initial revocation, // final delivery address, and his accepted csv delay for the // commitment transactions. bobContribution := bobNode.Contribution(ourContribution.CommitKey) if err := chanReservation.ProcessContribution(bobContribution); err != nil { t.Fatalf("unable to add bob's funds to the funding tx: %v", err) } // At this point, the reservation should have our signatures, and a // partial funding transaction (missing bob's sigs). theirContribution := chanReservation.TheirContribution() ourFundingSigs, ourCommitSig := chanReservation.OurSignatures() if len(ourFundingSigs) != 2 { t.Fatalf("only %v of our sigs present, should have 2", len(ourFundingSigs)) } if ourCommitSig == nil { t.Fatalf("commitment sig not found") } if ourContribution.RevocationKey == nil { t.Fatalf("alice's revocation key not found") } // Additionally, the funding tx should have been populated. fundingTx := chanReservation.FinalFundingTx() if fundingTx == nil { t.Fatalf("funding transaction never created!") } // Their funds should also be filled in. if len(theirContribution.Inputs) != 1 { t.Fatalf("bob's outputs for funding tx not properly selected, have %v "+ "outputs should have 2", len(theirContribution.Inputs)) } if theirContribution.ChangeOutputs[0].Value != 2e8 { t.Fatalf("bob should have one change output with value 2e8"+ "satoshis, is instead %v", theirContribution.ChangeOutputs[0].Value) } if theirContribution.MultiSigKey == nil { t.Fatalf("bob's key for multi-sig not found") } if theirContribution.CommitKey == nil { t.Fatalf("bob's key for commit tx not found") } if theirContribution.DeliveryAddress == nil { t.Fatalf("bob's final delivery address not found") } if theirContribution.RevocationKey == nil { t.Fatalf("bob's revocaiton key not found") } // TODO(roasbeef): account for current hard-coded commit fee, // need to remove bob all together chanCapacity := int64(10e8 + 5000) // Alice responds with her output, change addr, multi-sig key and signatures. // Bob then responds with his signatures. bobsSigs, err := bobNode.signFundingTx(fundingTx) if err != nil { t.Fatalf("unable to sign inputs for bob: %v", err) } commitSig, err := bobNode.signCommitTx( chanReservation.LocalCommitTx(), chanReservation.FundingRedeemScript(), chanCapacity) if err != nil { t.Fatalf("bob is unable to sign alice's commit tx: %v", err) } if err := chanReservation.CompleteReservation(bobsSigs, commitSig); err != nil { t.Fatalf("unable to complete funding tx: %v", err) } // At this point, the channel can be considered "open" when the funding // txn hits a "comfortable" depth. // The resulting active channel state should have been persisted to the DB. fundingSha := fundingTx.TxSha() channels, err := wallet.ChannelDB.FetchOpenChannels(bobNode.id) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if !bytes.Equal(channels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved") } // Assert that tha channel opens after a single block. lnc := assertChannelOpen(t, miner, uint32(numReqConfs), chanReservation.DispatchChan()) // Now that the channel is open, execute a cooperative closure of the // now open channel. aliceCloseSig, _, err := lnc.InitCooperativeClose() if err != nil { t.Fatalf("unable to init cooperative closure: %v", err) } aliceCloseSig = append(aliceCloseSig, byte(txscript.SigHashAll)) chanInfo := lnc.StateSnapshot() // Obtain bob's signature for the closure transaction. witnessScript := lnc.FundingWitnessScript fundingOut := lnc.ChannelPoint() fundingTxIn := wire.NewTxIn(fundingOut, nil, nil) bobCloseTx := lnwallet.CreateCooperativeCloseTx(fundingTxIn, chanInfo.RemoteBalance, chanInfo.LocalBalance, lnc.RemoteDeliveryScript, lnc.LocalDeliveryScript, false) bobSig, err := bobNode.signCommitTx(bobCloseTx, witnessScript, int64(lnc.Capacity)) if err != nil { t.Fatalf("unable to generate bob's signature for closing tx: %v", err) } // Broadcast the transaction to the network. This transaction should // be accepted, and found in the next mined block. ourKey := chanReservation.OurContribution().MultiSigKey.SerializeCompressed() theirKey := chanReservation.TheirContribution().MultiSigKey.SerializeCompressed() witness := lnwallet.SpendMultiSig(witnessScript, ourKey, aliceCloseSig, theirKey, bobSig) bobCloseTx.TxIn[0].Witness = witness if err := wallet.PublishTransaction(bobCloseTx); err != nil { t.Fatalf("broadcast of close tx rejected: %v", err) } }
// Privkey: 5b18f5049efd9d3aff1fb9a06506c0b809fb71562b6ecd02f6c5b3ab298f3b0f // PKhash: miky84cHvLuk6jcT6GsSbgHR8d7eZCu9Qc changePkScript, _ = hex.DecodeString("76a914238ee44bb5c8c1314dd03974a17ec6c406fdcb8388ac") // echo -n | openssl sha256 // This stuff gets reversed!!! shaHash1Bytes, _ = hex.DecodeString("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855") shaHash1, _ = wire.NewShaHash(shaHash1Bytes) outpoint1 = wire.NewOutPoint(shaHash1, 0) // echo | openssl sha256 // This stuff gets reversed!!! shaHash2Bytes, _ = hex.DecodeString("01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b") shaHash2, _ = wire.NewShaHash(shaHash2Bytes) outpoint2 = wire.NewOutPoint(shaHash2, 1) // create inputs from outpoint1 and outpoint2 inputs = []*wire.TxIn{wire.NewTxIn(outpoint1, nil, nil), wire.NewTxIn(outpoint2, nil, nil)} // Commitment Signature tx = wire.NewMsgTx() emptybytes = new([]byte) sigStr, _ = txscript.RawTxInSignature(tx, 0, *emptybytes, txscript.SigHashAll, privKey) commitSig, _ = btcec.ParseSignature(sigStr, btcec.S256()) // Funding TX Sig 1 sig1privKeyBytes, _ = hex.DecodeString("927f5827d75dd2addeb532c0fa5ac9277565f981dd6d0d037b422be5f60bdbef") sig1privKey, _ = btcec.PrivKeyFromBytes(btcec.S256(), sig1privKeyBytes) sigStr1, _ = txscript.RawTxInSignature(tx, 0, *emptybytes, txscript.SigHashAll, sig1privKey) commitSig1, _ = btcec.ParseSignature(sigStr1, btcec.S256()) // Funding TX Sig 2 sig2privKeyBytes, _ = hex.DecodeString("8a4ad188f6f4000495b765cfb6ffa591133a73019c45428ddd28f53bab551847") sig2privKey, _ = btcec.PrivKeyFromBytes(btcec.S256(), sig2privKeyBytes)
// TestCommitmentSpendValidation test the spendability of both outputs within // the commitment transaction. // // The following spending cases are covered by this test: // * Alice's spend from the delayed output on her commitment transaction. // * Bob's spend from Alice's delayed output when she broadcasts a revoked // commitment transaction. // * Bob's spend from his unencumbered output within Alice's commitment // transaction. func TestCommitmentSpendValidation(t *testing.T) { // We generate a fake output, and the corresponding txin. This output // doesn't need to exist, as we'll only be validating spending from the // transaction that references this. fundingOut := &wire.OutPoint{ Hash: testHdSeed, Index: 50, } fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil) // We also set up set some resources for the commitment transaction. // Each side currently has 1 BTC within the channel, with a total // channel capacity of 2BTC. aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(), testWalletPrivKey) bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey) channelBalance := btcutil.Amount(1 * 10e8) csvTimeout := uint32(5) revocationPreimage := testHdSeed[:] revokePubKey := DeriveRevocationPubkey(bobKeyPub, revocationPreimage) aliceSelfOutputSigner := &mockSigner{aliceKeyPriv} // With all the test data set up, we create the commitment transaction. // We only focus on a single party's transactions, as the scripts are // identical with the roles reversed. // // This is Alice's commitment transaction, so she must wait a CSV delay // of 5 blocks before sweeping the output, while bob can spend // immediately with either the revocation key, or his regular key. commitmentTx, err := CreateCommitTx(fakeFundingTxIn, aliceKeyPub, bobKeyPub, revokePubKey, csvTimeout, channelBalance, channelBalance) if err != nil { t.Fatalf("unable to create commitment transaction: %v", nil) } delayOutput := commitmentTx.TxOut[0] regularOutput := commitmentTx.TxOut[1] // We're testing an uncooperative close, output sweep, so construct a // transaction which sweeps the funds to a random address. targetOutput, err := commitScriptUnencumbered(aliceKeyPub) if err != nil { t.Fatalf("unable to create target output: %v") } sweepTx := wire.NewMsgTx() sweepTx.Version = 2 sweepTx.AddTxIn(wire.NewTxIn(&wire.OutPoint{commitmentTx.TxSha(), 0}, nil, nil)) sweepTx.AddTxOut(&wire.TxOut{ PkScript: targetOutput, Value: 0.5 * 10e8, }) // First, we'll test spending with Alice's key after the timeout. delayScript, err := commitScriptToSelf(csvTimeout, aliceKeyPub, revokePubKey) if err != nil { t.Fatalf("unable to generate alice delay script: %v") } sweepTx.TxIn[0].Sequence = lockTimeToSequence(false, csvTimeout) signDesc := &SignDescriptor{ WitnessScript: delayScript, SigHashes: txscript.NewTxSigHashes(sweepTx), Output: &wire.TxOut{ Value: int64(channelBalance), }, HashType: txscript.SigHashAll, InputIndex: 0, } aliceWitnessSpend, err := CommitSpendTimeout(aliceSelfOutputSigner, signDesc, sweepTx) if err != nil { t.Fatalf("unable to generate delay commit spend witness :%v") } sweepTx.TxIn[0].Witness = aliceWitnessSpend vm, err := txscript.NewEngine(delayOutput.PkScript, sweepTx, 0, txscript.StandardVerifyFlags, nil, nil, int64(channelBalance)) if err != nil { t.Fatalf("unable to create engine: %v", err) } if err := vm.Execute(); err != nil { t.Fatalf("spend from delay output is invalid: %v", err) } // Next, we'll test bob spending with the derived revocation key to // simulate the scenario when alice broadcasts this commitmen // transaction after it's been revoked. revokePrivKey := DeriveRevocationPrivKey(bobKeyPriv, revocationPreimage) bobWitnessSpend, err := commitSpendRevoke(delayScript, channelBalance, revokePrivKey, sweepTx) if err != nil { t.Fatalf("unable to generate revocation witness: %v", err) } sweepTx.TxIn[0].Witness = bobWitnessSpend vm, err = txscript.NewEngine(delayOutput.PkScript, sweepTx, 0, txscript.StandardVerifyFlags, nil, nil, int64(channelBalance)) if err != nil { t.Fatalf("unable to create engine: %v", err) } if err := vm.Execute(); err != nil { t.Fatalf("revocation spend is invalid: %v", err) } // Finally, we test bob sweeping his output as normal in the case that // alice broadcasts this commitment transaction. bobScriptp2wkh, err := commitScriptUnencumbered(bobKeyPub) if err != nil { t.Fatalf("unable to create bob p2wkh script: %v", err) } bobRegularSpend, err := commitSpendNoDelay(bobScriptp2wkh, channelBalance, bobKeyPriv, sweepTx) if err != nil { t.Fatalf("unable to create bob regular spend: %v", err) } sweepTx.TxIn[0].Witness = bobRegularSpend vm, err = txscript.NewEngine(regularOutput.PkScript, sweepTx, 0, txscript.StandardVerifyFlags, nil, nil, int64(channelBalance)) if err != nil { t.Fatalf("unable to create engine: %v", err) } if err := vm.Execute(); err != nil { t.Fatalf("bob p2wkh spend is invalid: %v", err) } }
// readElement is a one-stop utility function to deserialize any datastructure // encoded using the serialization format of lnwire. func readElement(r io.Reader, element interface{}) error { var err error switch e := element.(type) { case *uint8: var b [1]uint8 if _, err := r.Read(b[:]); err != nil { return err } *e = b[0] case *uint16: var b [2]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = binary.BigEndian.Uint16(b[:]) case *ErrorCode: var b [2]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = ErrorCode(binary.BigEndian.Uint16(b[:])) case *CreditsAmount: var b [8]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = CreditsAmount(int64(binary.BigEndian.Uint64(b[:]))) case *uint32: var b [4]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = binary.BigEndian.Uint32(b[:]) case *uint64: var b [8]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = binary.BigEndian.Uint64(b[:]) case *HTLCKey: var b [8]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = HTLCKey(int64(binary.BigEndian.Uint64(b[:]))) case *btcutil.Amount: var b [8]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = btcutil.Amount(int64(binary.BigEndian.Uint64(b[:]))) case **wire.ShaHash: var b wire.ShaHash if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = &b case **btcec.PublicKey: var b [33]byte if _, err = io.ReadFull(r, b[:]); err != nil { return err } pubKey, err := btcec.ParsePubKey(b[:], btcec.S256()) if err != nil { return err } *e = pubKey case *[]uint64: var numItems uint16 if err := readElement(r, &numItems); err != nil { return err } // if numItems > 65535 { // return fmt.Errorf("Too many items in []uint64") // } // Read the number of items var items []uint64 for i := uint16(0); i < numItems; i++ { var item uint64 err = readElement(r, &item) if err != nil { return err } items = append(items, item) } *e = items case *[]*btcec.Signature: var numSigs uint8 err = readElement(r, &numSigs) if err != nil { return err } if numSigs > 127 { return fmt.Errorf("Too many signatures!") } // Read that number of signatures var sigs []*btcec.Signature for i := uint8(0); i < numSigs; i++ { sig := new(btcec.Signature) err = readElement(r, &sig) if err != nil { return err } sigs = append(sigs, sig) } *e = sigs return nil case **btcec.Signature: sigBytes, err := wire.ReadVarBytes(r, 0, 73, "signature") if err != nil { return err } sig, err := btcec.ParseSignature(sigBytes, btcec.S256()) if err != nil { return err } *e = sig case *[][32]byte: // How many to read var sliceSize uint16 err = readElement(r, &sliceSize) if err != nil { return err } data := make([][32]byte, 0, sliceSize) // Append the actual for i := uint16(0); i < sliceSize; i++ { var element [32]byte err = readElement(r, &element) if err != nil { return err } data = append(data, element) } *e = data case *[32]byte: if _, err = io.ReadFull(r, e[:]); err != nil { return err } case *wire.BitcoinNet: var b [4]byte if _, err := io.ReadFull(r, b[:]); err != nil { return err } *e = wire.BitcoinNet(binary.BigEndian.Uint32(b[:])) return nil case *[]byte: bytes, err := wire.ReadVarBytes(r, 0, MaxSliceLength, "byte slice") if err != nil { return err } *e = bytes case *PkScript: pkScript, err := wire.ReadVarBytes(r, 0, 25, "pkscript") if err != nil { return err } *e = pkScript case *string: str, err := wire.ReadVarString(r, 0) if err != nil { return err } *e = str case *[]*wire.TxIn: // Read the size (1-byte number of txins) var numScripts uint8 if err := readElement(r, &numScripts); err != nil { return err } if numScripts > 127 { return fmt.Errorf("Too many txins") } // Append the actual TxIns txins := make([]*wire.TxIn, 0, numScripts) for i := uint8(0); i < numScripts; i++ { outpoint := new(wire.OutPoint) txin := wire.NewTxIn(outpoint, nil, nil) if err := readElement(r, &txin); err != nil { return err } txins = append(txins, txin) } *e = txins case **wire.TxIn: // Hash var h [32]byte if _, err = io.ReadFull(r, h[:]); err != nil { return err } hash, err := wire.NewShaHash(h[:]) if err != nil { return err } (*e).PreviousOutPoint.Hash = *hash // Index var idxBytes [4]byte _, err = io.ReadFull(r, idxBytes[:]) if err != nil { return err } (*e).PreviousOutPoint.Index = binary.BigEndian.Uint32(idxBytes[:]) return nil case **wire.OutPoint: // TODO(roasbeef): consolidate with above var h [32]byte if _, err = io.ReadFull(r, h[:]); err != nil { return err } hash, err := wire.NewShaHash(h[:]) if err != nil { return err } // Index var idxBytes [4]byte _, err = io.ReadFull(r, idxBytes[:]) if err != nil { return err } index := binary.BigEndian.Uint32(idxBytes[:]) *e = wire.NewOutPoint(hash, index) default: return fmt.Errorf("Unknown type in readElement: %T", e) } return nil }
// Test the sigscript generation for valid and invalid inputs, all // hashTypes, and with and without compression. This test creates // sigscripts to spend fake coinbase inputs, as sigscripts cannot be // created for the MsgTxs in txTests, since they come from the blockchain // and we don't have the private keys. func TestSignatureScript(t *testing.T) { t.Parallel() privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyD) nexttest: for i := range sigScriptTests { tx := wire.NewMsgTx(wire.TxVersion) output := wire.NewTxOut(500, []byte{OP_RETURN}) tx.AddTxOut(output) for range sigScriptTests[i].inputs { txin := wire.NewTxIn(coinbaseOutPoint, nil, nil) tx.AddTxIn(txin) } var script []byte var err error for j := range tx.TxIn { var idx int if sigScriptTests[i].inputs[j].indexOutOfRange { t.Errorf("at test %v", sigScriptTests[i].name) idx = len(sigScriptTests[i].inputs) } else { idx = j } script, err = SignatureScript(tx, idx, sigScriptTests[i].inputs[j].txout.PkScript, sigScriptTests[i].hashType, privKey, sigScriptTests[i].compress) if (err == nil) != sigScriptTests[i].inputs[j].sigscriptGenerates { if err == nil { t.Errorf("passed test '%v' incorrectly", sigScriptTests[i].name) } else { t.Errorf("failed test '%v': %v", sigScriptTests[i].name, err) } continue nexttest } if !sigScriptTests[i].inputs[j].sigscriptGenerates { // done with this test continue nexttest } tx.TxIn[j].SignatureScript = script } // If testing using a correct sigscript but for an incorrect // index, use last input script for first input. Requires > 0 // inputs for test. if sigScriptTests[i].scriptAtWrongIndex { tx.TxIn[0].SignatureScript = script sigScriptTests[i].inputs[0].inputValidates = false } // Validate tx input scripts scriptFlags := ScriptBip16 | ScriptVerifyDERSignatures for j := range tx.TxIn { vm, err := NewEngine(sigScriptTests[i]. inputs[j].txout.PkScript, tx, j, scriptFlags, nil, nil, 0) if err != nil { t.Errorf("cannot create script vm for test %v: %v", sigScriptTests[i].name, err) continue nexttest } err = vm.Execute() if (err == nil) != sigScriptTests[i].inputs[j].inputValidates { if err == nil { t.Errorf("passed test '%v' validation incorrectly: %v", sigScriptTests[i].name, err) } else { t.Errorf("failed test '%v' validation: %v", sigScriptTests[i].name, err) } continue nexttest } } } }
// createTestChannels creates two test channels funded witr 10 BTC, with 5 BTC // allocated to each side. func createTestChannels(revocationWindow int) (*LightningChannel, *LightningChannel, func(), error) { aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(), testWalletPrivKey) bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey) channelCapacity := btcutil.Amount(10 * 1e8) channelBal := channelCapacity / 2 csvTimeoutAlice := uint32(5) csvTimeoutBob := uint32(4) witnessScript, _, err := GenFundingPkScript(aliceKeyPub.SerializeCompressed(), bobKeyPub.SerializeCompressed(), int64(channelCapacity)) if err != nil { return nil, nil, nil, err } prevOut := &wire.OutPoint{ Hash: wire.ShaHash(testHdSeed), Index: 0, } fundingTxIn := wire.NewTxIn(prevOut, nil, nil) bobElkrem := elkrem.NewElkremSender(deriveElkremRoot(bobKeyPriv, bobKeyPub, aliceKeyPub)) bobFirstRevoke, err := bobElkrem.AtIndex(0) if err != nil { return nil, nil, nil, err } bobRevokeKey := DeriveRevocationPubkey(aliceKeyPub, bobFirstRevoke[:]) aliceElkrem := elkrem.NewElkremSender(deriveElkremRoot(aliceKeyPriv, aliceKeyPub, bobKeyPub)) aliceFirstRevoke, err := aliceElkrem.AtIndex(0) if err != nil { return nil, nil, nil, err } aliceRevokeKey := DeriveRevocationPubkey(bobKeyPub, aliceFirstRevoke[:]) aliceCommitTx, err := CreateCommitTx(fundingTxIn, aliceKeyPub, bobKeyPub, aliceRevokeKey, csvTimeoutAlice, channelBal, channelBal) if err != nil { return nil, nil, nil, err } bobCommitTx, err := CreateCommitTx(fundingTxIn, bobKeyPub, aliceKeyPub, bobRevokeKey, csvTimeoutBob, channelBal, channelBal) if err != nil { return nil, nil, nil, err } alicePath, err := ioutil.TempDir("", "alicedb") dbAlice, err := channeldb.Open(alicePath, &chaincfg.TestNet3Params) if err != nil { return nil, nil, nil, err } bobPath, err := ioutil.TempDir("", "bobdb") dbBob, err := channeldb.Open(bobPath, &chaincfg.TestNet3Params) if err != nil { return nil, nil, nil, err } aliceChannelState := &channeldb.OpenChannel{ IdentityPub: aliceKeyPub, ChanID: prevOut, OurCommitKey: aliceKeyPub, TheirCommitKey: bobKeyPub, Capacity: channelCapacity, OurBalance: channelBal, TheirBalance: channelBal, OurCommitTx: aliceCommitTx, FundingOutpoint: prevOut, OurMultiSigKey: aliceKeyPub, TheirMultiSigKey: bobKeyPub, FundingWitnessScript: witnessScript, LocalCsvDelay: csvTimeoutAlice, RemoteCsvDelay: csvTimeoutBob, TheirCurrentRevocation: bobRevokeKey, LocalElkrem: aliceElkrem, RemoteElkrem: &elkrem.ElkremReceiver{}, Db: dbAlice, } bobChannelState := &channeldb.OpenChannel{ IdentityPub: bobKeyPub, ChanID: prevOut, OurCommitKey: bobKeyPub, TheirCommitKey: aliceKeyPub, Capacity: channelCapacity, OurBalance: channelBal, TheirBalance: channelBal, OurCommitTx: bobCommitTx, FundingOutpoint: prevOut, OurMultiSigKey: bobKeyPub, TheirMultiSigKey: aliceKeyPub, FundingWitnessScript: witnessScript, LocalCsvDelay: csvTimeoutBob, RemoteCsvDelay: csvTimeoutAlice, TheirCurrentRevocation: aliceRevokeKey, LocalElkrem: bobElkrem, RemoteElkrem: &elkrem.ElkremReceiver{}, Db: dbBob, } cleanUpFunc := func() { os.RemoveAll(bobPath) os.RemoveAll(alicePath) } aliceSigner := &mockSigner{aliceKeyPriv} bobSigner := &mockSigner{bobKeyPriv} notifier := &mockNotfier{} channelAlice, err := NewLightningChannel(aliceSigner, nil, notifier, aliceChannelState) if err != nil { return nil, nil, nil, err } channelBob, err := NewLightningChannel(bobSigner, nil, notifier, bobChannelState) if err != nil { return nil, nil, nil, err } // Now that the channel are open, simulate the start of a session by // having Alice and Bob extend their revocation windows to each other. err = initRevocationWindows(channelAlice, channelBob, revocationWindow) if err != nil { return nil, nil, nil, err } return channelAlice, channelBob, cleanUpFunc, nil }
// handleContributionMsg processes the second workflow step for the lifetime of // a channel reservation. Upon completion, the reservation will carry a // completed funding transaction (minus the counterparty's input signatures), // both versions of the commitment transaction, and our signature for their // version of the commitment transaction. func (l *LightningWallet) handleContributionMsg(req *addContributionMsg) { l.limboMtx.Lock() pendingReservation, ok := l.fundingLimbo[req.pendingFundingID] l.limboMtx.Unlock() if !ok { req.err <- fmt.Errorf("attempted to update non-existant funding state") return } // Grab the mutex on the ChannelReservation to ensure thead-safety pendingReservation.Lock() defer pendingReservation.Unlock() // Create a blank, fresh transaction. Soon to be a complete funding // transaction which will allow opening a lightning channel. pendingReservation.fundingTx = wire.NewMsgTx() fundingTx := pendingReservation.fundingTx // Some temporary variables to cut down on the resolution verbosity. pendingReservation.theirContribution = req.contribution theirContribution := req.contribution ourContribution := pendingReservation.ourContribution // Add all multi-party inputs and outputs to the transaction. for _, ourInput := range ourContribution.Inputs { fundingTx.AddTxIn(ourInput) } for _, theirInput := range theirContribution.Inputs { fundingTx.AddTxIn(theirInput) } for _, ourChangeOutput := range ourContribution.ChangeOutputs { fundingTx.AddTxOut(ourChangeOutput) } for _, theirChangeOutput := range theirContribution.ChangeOutputs { fundingTx.AddTxOut(theirChangeOutput) } ourKey := pendingReservation.partialState.OurMultiSigKey theirKey := theirContribution.MultiSigKey // Finally, add the 2-of-2 multi-sig output which will set up the lightning // channel. channelCapacity := int64(pendingReservation.partialState.Capacity) witnessScript, multiSigOut, err := GenFundingPkScript(ourKey.SerializeCompressed(), theirKey.SerializeCompressed(), channelCapacity) if err != nil { req.err <- err return } pendingReservation.partialState.FundingWitnessScript = witnessScript // Sort the transaction. Since both side agree to a canonical // ordering, by sorting we no longer need to send the entire // transaction. Only signatures will be exchanged. fundingTx.AddTxOut(multiSigOut) txsort.InPlaceSort(pendingReservation.fundingTx) // Next, sign all inputs that are ours, collecting the signatures in // order of the inputs. pendingReservation.ourFundingInputScripts = make([]*InputScript, 0, len(ourContribution.Inputs)) signDesc := SignDescriptor{ HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(fundingTx), } for i, txIn := range fundingTx.TxIn { info, err := l.FetchInputInfo(&txIn.PreviousOutPoint) if err == ErrNotMine { continue } else if err != nil { req.err <- err return } signDesc.Output = info signDesc.InputIndex = i inputScript, err := l.Signer.ComputeInputScript(fundingTx, &signDesc) if err != nil { req.err <- err return } txIn.SignatureScript = inputScript.ScriptSig txIn.Witness = inputScript.Witness pendingReservation.ourFundingInputScripts = append( pendingReservation.ourFundingInputScripts, inputScript, ) } // Locate the index of the multi-sig outpoint in order to record it // since the outputs are canonically sorted. If this is a single funder // workflow, then we'll also need to send this to the remote node. fundingTxID := fundingTx.TxSha() _, multiSigIndex := FindScriptOutputIndex(fundingTx, multiSigOut.PkScript) fundingOutpoint := wire.NewOutPoint(&fundingTxID, multiSigIndex) pendingReservation.partialState.FundingOutpoint = fundingOutpoint // Initialize an empty sha-chain for them, tracking the current pending // revocation hash (we don't yet know the pre-image so we can't add it // to the chain). e := &elkrem.ElkremReceiver{} pendingReservation.partialState.RemoteElkrem = e pendingReservation.partialState.TheirCurrentRevocation = theirContribution.RevocationKey masterElkremRoot, err := l.deriveMasterElkremRoot() if err != nil { req.err <- err return } // Now that we have their commitment key, we can create the revocation // key for the first version of our commitment transaction. To do so, // we'll first create our elkrem root, then grab the first pre-iamge // from it. elkremRoot := deriveElkremRoot(masterElkremRoot, ourKey, theirKey) elkremSender := elkrem.NewElkremSender(elkremRoot) pendingReservation.partialState.LocalElkrem = elkremSender firstPreimage, err := elkremSender.AtIndex(0) if err != nil { req.err <- err return } theirCommitKey := theirContribution.CommitKey ourRevokeKey := DeriveRevocationPubkey(theirCommitKey, firstPreimage[:]) // Create the txIn to our commitment transaction; required to construct // the commitment transactions. fundingTxIn := wire.NewTxIn(wire.NewOutPoint(&fundingTxID, multiSigIndex), nil, nil) // With the funding tx complete, create both commitment transactions. // TODO(roasbeef): much cleanup + de-duplication pendingReservation.fundingLockTime = theirContribution.CsvDelay ourBalance := ourContribution.FundingAmount theirBalance := theirContribution.FundingAmount ourCommitKey := ourContribution.CommitKey ourCommitTx, err := CreateCommitTx(fundingTxIn, ourCommitKey, theirCommitKey, ourRevokeKey, ourContribution.CsvDelay, ourBalance, theirBalance) if err != nil { req.err <- err return } theirCommitTx, err := CreateCommitTx(fundingTxIn, theirCommitKey, ourCommitKey, theirContribution.RevocationKey, theirContribution.CsvDelay, theirBalance, ourBalance) if err != nil { req.err <- err return } // Sort both transactions according to the agreed upon cannonical // ordering. This lets us skip sending the entire transaction over, // instead we'll just send signatures. txsort.InPlaceSort(ourCommitTx) txsort.InPlaceSort(theirCommitTx) deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress) if err != nil { req.err <- err return } // Record newly available information witin the open channel state. pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay pendingReservation.partialState.TheirDeliveryScript = deliveryScript pendingReservation.partialState.ChanID = fundingOutpoint pendingReservation.partialState.TheirCommitKey = theirCommitKey pendingReservation.partialState.TheirMultiSigKey = theirContribution.MultiSigKey pendingReservation.partialState.OurCommitTx = ourCommitTx pendingReservation.ourContribution.RevocationKey = ourRevokeKey // Generate a signature for their version of the initial commitment // transaction. signDesc = SignDescriptor{ WitnessScript: witnessScript, PubKey: ourKey, Output: multiSigOut, HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(theirCommitTx), InputIndex: 0, } sigTheirCommit, err := l.Signer.SignOutputRaw(theirCommitTx, &signDesc) if err != nil { req.err <- err return } pendingReservation.ourCommitmentSig = sigTheirCommit req.err <- nil }
// TestHTLCReceiverSpendValidation tests all possible valid+invalid redemption // paths in the script used within the reciever's commitment transaction for an // incoming HTLC. // // The following cases are exercised by this test: // * reciever spends // * HTLC redemption w/ invalid preimage size // * HTLC redemption w/ invalid sequence // * HTLC redemption w/ valid preimage size // * sender spends // * revoke w/ sig // * refund w/ invalid lock time // * refund w/ valid lock time func TestHTLCReceiverSpendValidation(t *testing.T) { // We generate a fake output, and the coresponding txin. This output // doesn't need to exist, as we'll only be validating spending from the // transaction that references this. fundingOut := &wire.OutPoint{ Hash: testHdSeed, Index: 50, } fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil) // Generate a payment and revocation pre-image to be used below. revokePreimage := testHdSeed[:] revokeHash := fastsha256.Sum256(revokePreimage) paymentPreimage := revokeHash paymentPreimage[0] ^= 1 paymentHash := fastsha256.Sum256(paymentPreimage[:]) // We'll also need some tests keys for alice and bob, and meta-data of // the HTLC output. aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(), testWalletPrivKey) bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey) paymentAmt := btcutil.Amount(1 * 10e8) cltvTimeout := uint32(8) csvTimeout := uint32(5) // Generate the raw HTLC redemption scripts, and its p2wsh counterpart. htlcScript, err := receiverHTLCScript(cltvTimeout, csvTimeout, aliceKeyPub, bobKeyPub, revokeHash[:], paymentHash[:]) if err != nil { t.Fatalf("unable to create htlc sender script: %v", err) } htlcWitnessScript, err := witnessScriptHash(htlcScript) if err != nil { t.Fatalf("unable to create p2wsh htlc script: %v", err) } // This will be Bob's commitment transaction. In this scenario Alice // is sending an HTLC to a node she has a a path to (could be Bob, // could be multiple hops down, it doesn't really matter). recieverCommitTx := wire.NewMsgTx() recieverCommitTx.AddTxIn(fakeFundingTxIn) recieverCommitTx.AddTxOut(&wire.TxOut{ Value: int64(paymentAmt), PkScript: htlcWitnessScript, }) prevOut := &wire.OutPoint{ Hash: recieverCommitTx.TxSha(), Index: 0, } sweepTx := wire.NewMsgTx() sweepTx.AddTxIn(wire.NewTxIn(prevOut, nil, nil)) sweepTx.AddTxOut( &wire.TxOut{ PkScript: []byte("doesn't matter"), Value: 1 * 10e8, }, ) testCases := []struct { witness func() wire.TxWitness valid bool }{ { // HTLC redemption w/ invalid preimage size makeWitnessTestCase(t, func() (wire.TxWitness, error) { return receiverHtlcSpendRedeem(htlcScript, paymentAmt, bobKeyPriv, sweepTx, bytes.Repeat([]byte{1}, 45), csvTimeout, ) }), false, }, { // HTLC redemption w/ invalid sequence makeWitnessTestCase(t, func() (wire.TxWitness, error) { return receiverHtlcSpendRedeem(htlcScript, paymentAmt, bobKeyPriv, sweepTx, paymentPreimage[:], csvTimeout-2, ) }), false, }, { // HTLC redemption w/ valid preimage size makeWitnessTestCase(t, func() (wire.TxWitness, error) { return receiverHtlcSpendRedeem(htlcScript, paymentAmt, bobKeyPriv, sweepTx, paymentPreimage[:], csvTimeout, ) }), true, }, { // revoke w/ sig makeWitnessTestCase(t, func() (wire.TxWitness, error) { return receiverHtlcSpendRevoke(htlcScript, paymentAmt, aliceKeyPriv, sweepTx, revokePreimage[:], ) }), true, }, { // refund w/ invalid lock time makeWitnessTestCase(t, func() (wire.TxWitness, error) { return receiverHtlcSpendTimeout(htlcScript, paymentAmt, aliceKeyPriv, sweepTx, cltvTimeout-2) }), false, }, { // refund w/ valid lock time makeWitnessTestCase(t, func() (wire.TxWitness, error) { return receiverHtlcSpendTimeout(htlcScript, paymentAmt, aliceKeyPriv, sweepTx, cltvTimeout) }), true, }, } for i, testCase := range testCases { sweepTx.TxIn[0].Witness = testCase.witness() vm, err := txscript.NewEngine(htlcWitnessScript, sweepTx, 0, txscript.StandardVerifyFlags, nil, nil, int64(paymentAmt)) if err != nil { t.Fatalf("unable to create engine: %v", err) } // This buffer will trace execution of the Script, only dumping // out to stdout in the case that a test fails. var debugBuf bytes.Buffer done := false for !done { dis, err := vm.DisasmPC() if err != nil { t.Fatalf("stepping (%v)\n", err) } debugBuf.WriteString(fmt.Sprintf("stepping %v\n", dis)) done, err = vm.Step() if err != nil && testCase.valid { fmt.Println(debugBuf.String()) t.Fatalf("spend test case #%v failed, spend should be valid: %v", i, err) } else if err == nil && !testCase.valid && done { fmt.Println(debugBuf.String()) t.Fatalf("spend test case #%v succeed, spend should be invalid: %v", i, err) } debugBuf.WriteString(fmt.Sprintf("Stack: ", vm.GetStack())) debugBuf.WriteString(fmt.Sprintf("AltStack: ", vm.GetAltStack())) } } }
// TestCheckSerializedHeight tests the checkSerializedHeight function with // various serialized heights and also does negative tests to ensure errors // and handled properly. func TestCheckSerializedHeight(t *testing.T) { // Create an empty coinbase template to be used in the tests below. coinbaseOutpoint := wire.NewOutPoint(&chainhash.Hash{}, math.MaxUint32) coinbaseTx := wire.NewMsgTx(1) coinbaseTx.AddTxIn(wire.NewTxIn(coinbaseOutpoint, nil, nil)) // Expected rule errors. missingHeightError := blockchain.RuleError{ ErrorCode: blockchain.ErrMissingCoinbaseHeight, } badHeightError := blockchain.RuleError{ ErrorCode: blockchain.ErrBadCoinbaseHeight, } tests := []struct { sigScript []byte // Serialized data wantHeight int32 // Expected height err error // Expected error type }{ // No serialized height length. {[]byte{}, 0, missingHeightError}, // Serialized height length with no height bytes. {[]byte{0x02}, 0, missingHeightError}, // Serialized height length with too few height bytes. {[]byte{0x02, 0x4a}, 0, missingHeightError}, // Serialized height that needs 2 bytes to encode. {[]byte{0x02, 0x4a, 0x52}, 21066, nil}, // Serialized height that needs 2 bytes to encode, but backwards // endianness. {[]byte{0x02, 0x4a, 0x52}, 19026, badHeightError}, // Serialized height that needs 3 bytes to encode. {[]byte{0x03, 0x40, 0x0d, 0x03}, 200000, nil}, // Serialized height that needs 3 bytes to encode, but backwards // endianness. {[]byte{0x03, 0x40, 0x0d, 0x03}, 1074594560, badHeightError}, } t.Logf("Running %d tests", len(tests)) for i, test := range tests { msgTx := coinbaseTx.Copy() msgTx.TxIn[0].SignatureScript = test.sigScript tx := btcutil.NewTx(msgTx) err := blockchain.TstCheckSerializedHeight(tx, test.wantHeight) if reflect.TypeOf(err) != reflect.TypeOf(test.err) { t.Errorf("checkSerializedHeight #%d wrong error type "+ "got: %v <%T>, want: %T", i, err, err, test.err) continue } if rerr, ok := err.(blockchain.RuleError); ok { trerr := test.err.(blockchain.RuleError) if rerr.ErrorCode != trerr.ErrorCode { t.Errorf("checkSerializedHeight #%d wrong "+ "error code got: %v, want: %v", i, rerr.ErrorCode, trerr.ErrorCode) continue } } } }
func (s *SPVCon) SendOne(u Utxo, adr btcutil.Address) error { // fixed fee fee := int64(5000) sendAmt := u.Value - fee tx := wire.NewMsgTx() // make new tx // add single output outAdrScript, err := txscript.PayToAddrScript(adr) if err != nil { return err } // make user specified txout and add to tx txout := wire.NewTxOut(sendAmt, outAdrScript) tx.AddTxOut(txout) var prevPKs []byte if u.IsWit { //tx.Flags = 0x01 wa, err := btcutil.NewAddressWitnessPubKeyHash( s.TS.Adrs[u.KeyIdx].PkhAdr.ScriptAddress(), s.TS.Param) prevPKs, err = txscript.PayToAddrScript(wa) if err != nil { return err } } else { // otherwise generate directly prevPKs, err = txscript.PayToAddrScript( s.TS.Adrs[u.KeyIdx].PkhAdr) if err != nil { return err } } tx.AddTxIn(wire.NewTxIn(&u.Op, prevPKs, nil)) var sig []byte var wit [][]byte hCache := txscript.NewTxSigHashes(tx) child, err := s.TS.rootPrivKey.Child(u.KeyIdx + hdkeychain.HardenedKeyStart) if err != nil { return err } priv, err := child.ECPrivKey() if err != nil { return err } // This is where witness based sighash types need to happen // sign into stash if u.IsWit { wit, err = txscript.WitnessScript( tx, hCache, 0, u.Value, tx.TxIn[0].SignatureScript, txscript.SigHashAll, priv, true) if err != nil { return err } } else { sig, err = txscript.SignatureScript( tx, 0, tx.TxIn[0].SignatureScript, txscript.SigHashAll, priv, true) if err != nil { return err } } // swap sigs into sigScripts in txins if sig != nil { tx.TxIn[0].SignatureScript = sig } if wit != nil { tx.TxIn[0].Witness = wit tx.TxIn[0].SignatureScript = nil } return s.NewOutgoingTx(tx) }
// newBobNode generates a test "ln node" to interact with Alice (us). For the // funding transaction, bob has a single output totaling 7BTC. For our basic // test, he'll fund the channel with 5BTC, leaving 2BTC to the change output. // TODO(roasbeef): proper handling of change etc. func newBobNode(miner *rpctest.Harness, amt btcutil.Amount) (*bobNode, error) { // First, parse Bob's priv key in order to obtain a key he'll use for the // multi-sig funding transaction. privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey) // Next, generate an output redeemable by bob. pkHash := btcutil.Hash160(pubKey.SerializeCompressed()) bobAddr, err := btcutil.NewAddressWitnessPubKeyHash( pkHash, miner.ActiveNet) if err != nil { return nil, err } bobAddrScript, err := txscript.PayToAddrScript(bobAddr) if err != nil { return nil, err } // Give bobNode one 7 BTC output for use in creating channels. output := &wire.TxOut{7e8, bobAddrScript} mainTxid, err := miner.CoinbaseSpend([]*wire.TxOut{output}) if err != nil { return nil, err } // Mine a block in order to include the above output in a block. During // the reservation workflow, we currently test to ensure that the funding // output we're given actually exists. if _, err := miner.Node.Generate(1); err != nil { return nil, err } // Grab the transaction in order to locate the output index to Bob. tx, err := miner.Node.GetRawTransaction(mainTxid) if err != nil { return nil, err } found, index := lnwallet.FindScriptOutputIndex(tx.MsgTx(), bobAddrScript) if !found { return nil, fmt.Errorf("output to bob never created") } prevOut := wire.NewOutPoint(mainTxid, index) bobTxIn := wire.NewTxIn(prevOut, nil, nil) // Using bobs priv key above, create a change output he can spend. bobChangeOutput := wire.NewTxOut(2*1e8, bobAddrScript) // Bob's initial revocation hash is just his private key with the first // byte changed... var revocation [32]byte copy(revocation[:], bobsPrivKey) revocation[0] = 0xff // His ID is just as creative... var id [wire.HashSize]byte id[0] = 0xff return &bobNode{ id: pubKey, privKey: privKey, channelKey: pubKey, deliveryAddress: bobAddr, revocation: revocation, fundingAmt: amt, delay: 5, availableOutputs: []*wire.TxIn{bobTxIn}, changeOutputs: []*wire.TxOut{bobChangeOutput}, }, nil }
// SendCoins does send coins, but it's very rudimentary // wit makes it into p2wpkh. Which is not yet spendable. func (s *SPVCon) SendCoins(adrs []btcutil.Address, sendAmts []int64) error { if len(adrs) != len(sendAmts) { return fmt.Errorf("%d addresses and %d amounts", len(adrs), len(sendAmts)) } var err error var score, totalSend, fee int64 dustCutoff := int64(20000) // below this amount, just give to miners satPerByte := int64(80) // satoshis per byte fee; have as arg later rawUtxos, err := s.TS.GetAllUtxos() if err != nil { return err } var allUtxos SortableUtxoSlice // start with utxos sorted by value. for _, utxo := range rawUtxos { score += utxo.Value allUtxos = append(allUtxos, *utxo) } // smallest and unconfirmed last (because it's reversed) sort.Sort(sort.Reverse(allUtxos)) // sort.Reverse(allUtxos) for _, amt := range sendAmts { totalSend += amt } // important rule in bitcoin, output total > input total is invalid. if totalSend > score { return fmt.Errorf("trying to send %d but %d available.", totalSend, score) } tx := wire.NewMsgTx() // make new tx // add non-change (arg) outputs for i, adr := range adrs { // make address script 76a914...88ac or 0014... outAdrScript, err := txscript.PayToAddrScript(adr) if err != nil { return err } // make user specified txout and add to tx txout := wire.NewTxOut(sendAmts[i], outAdrScript) tx.AddTxOut(txout) } // generate a utxo slice for your inputs var ins utxoSlice // add utxos until we've had enough nokori := totalSend // nokori is how much is needed on input side for _, utxo := range allUtxos { // skip unconfirmed. Or de-prioritize? // if utxo.AtHeight == 0 { // continue // } // yeah, lets add this utxo! ins = append(ins, utxo) // as we add utxos, fill in sigscripts // generate previous pkscripts (subscritpt?) for all utxos // then make txins with the utxo and prevpk, and insert them into the tx // these are all zeroed out during signing but it's an easy way to keep track var prevPKs []byte if utxo.IsWit { //tx.Flags = 0x01 wa, err := btcutil.NewAddressWitnessPubKeyHash( s.TS.Adrs[utxo.KeyIdx].PkhAdr.ScriptAddress(), s.TS.Param) prevPKs, err = txscript.PayToAddrScript(wa) if err != nil { return err } } else { // otherwise generate directly prevPKs, err = txscript.PayToAddrScript( s.TS.Adrs[utxo.KeyIdx].PkhAdr) if err != nil { return err } } tx.AddTxIn(wire.NewTxIn(&utxo.Op, prevPKs, nil)) nokori -= utxo.Value // if nokori is positive, don't bother checking fee yet. if nokori < 0 { fee = EstFee(tx, satPerByte) if nokori < -fee { // done adding utxos: nokori below negative est. fee break } } } // see if there's enough left to also add a change output changeOld, err := s.TS.NewAdr() // change is witnessy if err != nil { return err } changeAdr, err := btcutil.NewAddressWitnessPubKeyHash( changeOld.ScriptAddress(), s.TS.Param) if err != nil { return err } changeScript, err := txscript.PayToAddrScript(changeAdr) if err != nil { return err } changeOut := wire.NewTxOut(0, changeScript) tx.AddTxOut(changeOut) fee = EstFee(tx, satPerByte) changeOut.Value = -(nokori + fee) if changeOut.Value < dustCutoff { // remove last output (change) : not worth it tx.TxOut = tx.TxOut[:len(tx.TxOut)-1] } // sort utxos on the input side. use this instead of txsort // because we want to remember which keys are associated with which inputs sort.Sort(ins) // sort tx -- this only will change txouts since inputs are already sorted txsort.InPlaceSort(tx) // tx is ready for signing, sigStash := make([][]byte, len(ins)) witStash := make([][][]byte, len(ins)) // generate tx-wide hashCache for segwit stuff // middle index number doesn't matter for sighashAll. hCache := txscript.NewTxSigHashes(tx) for i, txin := range tx.TxIn { // pick key child, err := s.TS.rootPrivKey.Child( ins[i].KeyIdx + hdkeychain.HardenedKeyStart) if err != nil { return err } priv, err := child.ECPrivKey() if err != nil { return err } // This is where witness based sighash types need to happen // sign into stash if ins[i].IsWit { witStash[i], err = txscript.WitnessScript( tx, hCache, i, ins[i].Value, txin.SignatureScript, txscript.SigHashAll, priv, true) if err != nil { return err } } else { sigStash[i], err = txscript.SignatureScript( tx, i, txin.SignatureScript, txscript.SigHashAll, priv, true) if err != nil { return err } } } // swap sigs into sigScripts in txins for i, txin := range tx.TxIn { if sigStash[i] != nil { txin.SignatureScript = sigStash[i] } if witStash[i] != nil { txin.Witness = witStash[i] txin.SignatureScript = nil } } // fmt.Printf("tx: %s", TxToString(tx)) // buf := bytes.NewBuffer(make([]byte, 0, tx.SerializeSize())) // send it out on the wire. hope it gets there. // we should deal with rejects. Don't yet. err = s.NewOutgoingTx(tx) if err != nil { return err } return nil }
func testSingleFunderReservationWorkflowResponder(miner *rpctest.Harness, wallet *lnwallet.LightningWallet, t *testing.T) { t.Log("Running single funder workflow responder test") // For this scenario, bob will initiate the channel, while we simply act as // the responder. capacity := btcutil.Amount(4 * 1e8) // Create the bob-test wallet which will be initiator of a single // funder channel shortly. bobNode, err := newBobNode(miner, capacity) if err != nil { t.Fatalf("unable to create bob node: %v", err) } // Bob sends over a single funding request, so we allocate our // contribution and the necessary resources. fundingAmt := btcutil.Amount(0) chanReservation, err := wallet.InitChannelReservation(capacity, fundingAmt, bobNode.id, bobAddr, numReqConfs, 4) if err != nil { t.Fatalf("unable to init channel reservation: %v", err) } // Verify all contribution fields have been set properly. Since we are // the recipient of a single-funder channel, we shouldn't have selected // any coins or generated any change outputs. ourContribution := chanReservation.OurContribution() if len(ourContribution.Inputs) != 0 { t.Fatalf("outputs for funding tx not properly selected, have %v "+ "outputs should have 0", len(ourContribution.Inputs)) } if len(ourContribution.ChangeOutputs) != 0 { t.Fatalf("coin selection failed, should have no change outputs, "+ "instead have: %v", ourContribution.ChangeOutputs[0].Value) } if ourContribution.MultiSigKey == nil { t.Fatalf("alice's key for multi-sig not found") } if ourContribution.CommitKey == nil { t.Fatalf("alice's key for commit not found") } if ourContribution.DeliveryAddress == nil { t.Fatalf("alice's final delivery address not found") } if ourContribution.CsvDelay == 0 { t.Fatalf("csv delay not set") } // Next we process Bob's single funder contribution which doesn't // include any inputs or change addresses, as only Bob will construct // the funding transaction. bobContribution := bobNode.Contribution(ourContribution.CommitKey) if err := chanReservation.ProcessSingleContribution(bobContribution); err != nil { t.Fatalf("unable to process bob's contribution: %v", err) } if chanReservation.FinalFundingTx() != nil { t.Fatalf("funding transaction populated!") } if len(bobContribution.Inputs) != 1 { t.Fatalf("bob shouldn't have one inputs, instead has %v", len(bobContribution.Inputs)) } if ourContribution.RevocationKey == nil { t.Fatalf("alice's revocation key not found") } if len(bobContribution.ChangeOutputs) != 1 { t.Fatalf("bob shouldn't have one change output, instead "+ "has %v", len(bobContribution.ChangeOutputs)) } if bobContribution.MultiSigKey == nil { t.Fatalf("bob's key for multi-sig not found") } if bobContribution.CommitKey == nil { t.Fatalf("bob's key for commit tx not found") } if bobContribution.DeliveryAddress == nil { t.Fatalf("bob's final delivery address not found") } if bobContribution.RevocationKey == nil { t.Fatalf("bob's revocaiton key not found") } fundingRedeemScript, multiOut, err := lnwallet.GenFundingPkScript( ourContribution.MultiSigKey.SerializeCompressed(), bobContribution.MultiSigKey.SerializeCompressed(), // TODO(roasbeef): account for hard-coded fee, remove bob node int64(capacity)+5000) if err != nil { t.Fatalf("unable to generate multi-sig output: %v", err) } // At this point, we send Bob our contribution, allowing him to // construct the funding transaction, and sign our version of the // commitment transaction. fundingTx := wire.NewMsgTx() fundingTx.AddTxIn(bobNode.availableOutputs[0]) fundingTx.AddTxOut(bobNode.changeOutputs[0]) fundingTx.AddTxOut(multiOut) txsort.InPlaceSort(fundingTx) if _, err := bobNode.signFundingTx(fundingTx); err != nil { t.Fatalf("unable to generate bob's funding sigs: %v", err) } // Locate the output index of the 2-of-2 in order to send back to the // wallet so it can finalize the transaction by signing bob's commitment // transaction. fundingTxID := fundingTx.TxSha() _, multiSigIndex := lnwallet.FindScriptOutputIndex(fundingTx, multiOut.PkScript) fundingOutpoint := wire.NewOutPoint(&fundingTxID, multiSigIndex) fundingTxIn := wire.NewTxIn(fundingOutpoint, nil, nil) aliceCommitTx, err := lnwallet.CreateCommitTx(fundingTxIn, ourContribution.CommitKey, bobContribution.CommitKey, ourContribution.RevocationKey, ourContribution.CsvDelay, 0, capacity) if err != nil { t.Fatalf("unable to create alice's commit tx: %v", err) } txsort.InPlaceSort(aliceCommitTx) bobCommitSig, err := bobNode.signCommitTx(aliceCommitTx, // TODO(roasbeef): account for hard-coded fee, remove bob node fundingRedeemScript, int64(capacity)+5000) if err != nil { t.Fatalf("unable to sign alice's commit tx: %v", err) } // With this stage complete, Alice can now complete the reservation. bobRevokeKey := bobContribution.RevocationKey if err := chanReservation.CompleteReservationSingle(bobRevokeKey, fundingOutpoint, bobCommitSig); err != nil { t.Fatalf("unable to complete reservation: %v", err) } // Alice should have saved the funding output. if chanReservation.FundingOutpoint() != fundingOutpoint { t.Fatalf("funding outputs don't match: %#v vs %#v", chanReservation.FundingOutpoint(), fundingOutpoint) } // Some period of time later, Bob presents us with an SPV proof // attesting to an open channel. At this point Alice recognizes the // channel, saves the state to disk, and creates the channel itself. if _, err := chanReservation.FinalizeReservation(); err != nil { t.Fatalf("unable to finalize reservation: %v", err) } // TODO(roasbeef): bob verify alice's sig }
func TestInsertsCreditsDebitsRollbacks(t *testing.T) { t.Parallel() // Create a double spend of the received blockchain transaction. dupRecvTx, _ := btcutil.NewTxFromBytes(TstRecvSerializedTx) // Switch txout amount to 1 BTC. Transaction store doesn't // validate txs, so this is fine for testing a double spend // removal. TstDupRecvAmount := int64(1e8) newDupMsgTx := dupRecvTx.MsgTx() newDupMsgTx.TxOut[0].Value = TstDupRecvAmount TstDoubleSpendTx := btcutil.NewTx(newDupMsgTx) TstDoubleSpendSerializedTx := serializeTx(TstDoubleSpendTx) // Create a "signed" (with invalid sigs) tx that spends output 0 of // the double spend. spendingTx := wire.NewMsgTx() spendingTxIn := wire.NewTxIn(wire.NewOutPoint(TstDoubleSpendTx.Sha(), 0), []byte{0, 1, 2, 3, 4}) spendingTx.AddTxIn(spendingTxIn) spendingTxOut1 := wire.NewTxOut(1e7, []byte{5, 6, 7, 8, 9}) spendingTxOut2 := wire.NewTxOut(9e7, []byte{10, 11, 12, 13, 14}) spendingTx.AddTxOut(spendingTxOut1) spendingTx.AddTxOut(spendingTxOut2) TstSpendingTx := btcutil.NewTx(spendingTx) TstSpendingSerializedTx := serializeTx(TstSpendingTx) var _ = TstSpendingTx tests := []struct { name string f func(*Store) (*Store, error) bal, unc btcutil.Amount unspents map[wire.OutPoint]struct{} unmined map[wire.ShaHash]struct{} }{ { name: "new store", f: func(s *Store) (*Store, error) { return s, nil }, bal: 0, unc: 0, unspents: map[wire.OutPoint]struct{}{}, unmined: map[wire.ShaHash]struct{}{}, }, { name: "txout insert", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstRecvSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, nil) if err != nil { return nil, err } err = s.AddCredit(rec, nil, 0, false) return s, err }, bal: 0, unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value), unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstRecvTx.Sha(), Index: 0, }: {}, }, unmined: map[wire.ShaHash]struct{}{ *TstRecvTx.Sha(): {}, }, }, { name: "insert duplicate unconfirmed", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstRecvSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, nil) if err != nil { return nil, err } err = s.AddCredit(rec, nil, 0, false) return s, err }, bal: 0, unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value), unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstRecvTx.Sha(), Index: 0, }: {}, }, unmined: map[wire.ShaHash]struct{}{ *TstRecvTx.Sha(): {}, }, }, { name: "confirmed txout insert", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstRecvSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, TstRecvTxBlockDetails) if err != nil { return nil, err } err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false) return s, err }, bal: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value), unc: 0, unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstRecvTx.Sha(), Index: 0, }: {}, }, unmined: map[wire.ShaHash]struct{}{}, }, { name: "insert duplicate confirmed", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstRecvSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, TstRecvTxBlockDetails) if err != nil { return nil, err } err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false) return s, err }, bal: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value), unc: 0, unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstRecvTx.Sha(), Index: 0, }: {}, }, unmined: map[wire.ShaHash]struct{}{}, }, { name: "rollback confirmed credit", f: func(s *Store) (*Store, error) { err := s.Rollback(TstRecvTxBlockDetails.Height) return s, err }, bal: 0, unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value), unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstRecvTx.Sha(), Index: 0, }: {}, }, unmined: map[wire.ShaHash]struct{}{ *TstRecvTx.Sha(): {}, }, }, { name: "insert confirmed double spend", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstDoubleSpendSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, TstRecvTxBlockDetails) if err != nil { return nil, err } err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false) return s, err }, bal: btcutil.Amount(TstDoubleSpendTx.MsgTx().TxOut[0].Value), unc: 0, unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstDoubleSpendTx.Sha(), Index: 0, }: {}, }, unmined: map[wire.ShaHash]struct{}{}, }, { name: "insert unconfirmed debit", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, nil) return s, err }, bal: 0, unc: 0, unspents: map[wire.OutPoint]struct{}{}, unmined: map[wire.ShaHash]struct{}{ *TstSpendingTx.Sha(): {}, }, }, { name: "insert unconfirmed debit again", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstDoubleSpendSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, TstRecvTxBlockDetails) return s, err }, bal: 0, unc: 0, unspents: map[wire.OutPoint]struct{}{}, unmined: map[wire.ShaHash]struct{}{ *TstSpendingTx.Sha(): {}, }, }, { name: "insert change (index 0)", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, nil) if err != nil { return nil, err } err = s.AddCredit(rec, nil, 0, true) return s, err }, bal: 0, unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value), unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 0, }: {}, }, unmined: map[wire.ShaHash]struct{}{ *TstSpendingTx.Sha(): {}, }, }, { name: "insert output back to this own wallet (index 1)", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, nil) if err != nil { return nil, err } err = s.AddCredit(rec, nil, 1, true) return s, err }, bal: 0, unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value), unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 0, }: {}, wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 1, }: {}, }, unmined: map[wire.ShaHash]struct{}{ *TstSpendingTx.Sha(): {}, }, }, { name: "confirm signed tx", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, TstSignedTxBlockDetails) return s, err }, bal: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value), unc: 0, unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 0, }: {}, wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 1, }: {}, }, unmined: map[wire.ShaHash]struct{}{}, }, { name: "rollback after spending tx", f: func(s *Store) (*Store, error) { err := s.Rollback(TstSignedTxBlockDetails.Height + 1) return s, err }, bal: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value), unc: 0, unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 0, }: {}, wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 1, }: {}, }, unmined: map[wire.ShaHash]struct{}{}, }, { name: "rollback spending tx block", f: func(s *Store) (*Store, error) { err := s.Rollback(TstSignedTxBlockDetails.Height) return s, err }, bal: 0, unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value), unspents: map[wire.OutPoint]struct{}{ wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 0, }: {}, wire.OutPoint{ Hash: *TstSpendingTx.Sha(), Index: 1, }: {}, }, unmined: map[wire.ShaHash]struct{}{ *TstSpendingTx.Sha(): {}, }, }, { name: "rollback double spend tx block", f: func(s *Store) (*Store, error) { err := s.Rollback(TstRecvTxBlockDetails.Height) return s, err }, bal: 0, unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value), unspents: map[wire.OutPoint]struct{}{ *wire.NewOutPoint(TstSpendingTx.Sha(), 0): {}, *wire.NewOutPoint(TstSpendingTx.Sha(), 1): {}, }, unmined: map[wire.ShaHash]struct{}{ *TstDoubleSpendTx.Sha(): {}, *TstSpendingTx.Sha(): {}, }, }, { name: "insert original recv txout", f: func(s *Store) (*Store, error) { rec, err := NewTxRecord(TstRecvSerializedTx, time.Now()) if err != nil { return nil, err } err = s.InsertTx(rec, TstRecvTxBlockDetails) if err != nil { return nil, err } err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false) return s, err }, bal: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value), unc: 0, unspents: map[wire.OutPoint]struct{}{ *wire.NewOutPoint(TstRecvTx.Sha(), 0): {}, }, unmined: map[wire.ShaHash]struct{}{}, }, } s, teardown, err := testStore() defer teardown() if err != nil { t.Fatal(err) } for _, test := range tests { tmpStore, err := test.f(s) if err != nil { t.Fatalf("%s: got error: %v", test.name, err) } s = tmpStore bal, err := s.Balance(1, TstRecvCurrentHeight) if err != nil { t.Fatalf("%s: Confirmed Balance failed: %v", test.name, err) } if bal != test.bal { t.Fatalf("%s: balance mismatch: expected: %d, got: %d", test.name, test.bal, bal) } unc, err := s.Balance(0, TstRecvCurrentHeight) if err != nil { t.Fatalf("%s: Unconfirmed Balance failed: %v", test.name, err) } unc -= bal if unc != test.unc { t.Fatalf("%s: unconfirmed balance mismatch: expected %d, got %d", test.name, test.unc, unc) } // Check that unspent outputs match expected. unspent, err := s.UnspentOutputs() if err != nil { t.Fatalf("%s: failed to fetch unspent outputs: %v", test.name, err) } for _, cred := range unspent { if _, ok := test.unspents[cred.OutPoint]; !ok { t.Errorf("%s: unexpected unspent output: %v", test.name, cred.OutPoint) } delete(test.unspents, cred.OutPoint) } if len(test.unspents) != 0 { t.Fatalf("%s: missing expected unspent output(s)", test.name) } // Check that unmined txs match expected. unmined, err := s.UnminedTxs() if err != nil { t.Fatalf("%s: cannot load unmined transactions: %v", test.name, err) } for _, tx := range unmined { txHash := tx.TxSha() if _, ok := test.unmined[txHash]; !ok { t.Fatalf("%s: unexpected unmined tx: %v", test.name, txHash) } delete(test.unmined, txHash) } if len(test.unmined) != 0 { t.Fatalf("%s: missing expected unmined tx(s)", test.name) } } }