func zeroFor(targ *cc.Type) *cc.Expr { if targ != nil { k := targ.Def().Kind switch k { case c2go.String: return &cc.Expr{Op: cc.String, Texts: []string{`""`}} case c2go.Slice, cc.Ptr: return &cc.Expr{Op: cc.Name, Text: "nil"} case cc.Struct, cc.Array: return &cc.Expr{Op: cc.CastInit, Type: targ, Init: &cc.Init{}} case c2go.Bool: return &cc.Expr{Op: cc.Name, Text: "false"} } if c2go.Int8 <= k && k <= c2go.Float64 { return &cc.Expr{Op: cc.Number, Text: "0"} } return &cc.Expr{Op: cc.Number, Text: "0 /*" + targ.String() + "*/"} } return &cc.Expr{Op: cc.Number, Text: "0 /*untyped*/"} }
func inferCompatible(t1, t2 *cc.Type) bool { t1 = t1.Def() t2 = t2.Def() if isNumericCType(t1) && isNumericCType(t2) { return true } if t1.Kind == cc.Ptr && t1.Base.Kind == cc.Func { t1 = t1.Base } if t2.Kind == cc.Ptr && t2.Base.Kind == cc.Func { t2 = t2.Base } if sameType(t1, t2) { return true } if t1.Kind > t2.Kind { t1, t2 = t2, t1 } if t1.Kind == cc.Ptr && t2.Kind == cc.Array && (t1.Base.Is(cc.Void) || sameType(t1.Base, t2.Base)) { return true } if t1.Kind == cc.Ptr && t2.Kind == cc.Ptr && (t1.Base.Is(cc.Void) || t2.Base.Is(cc.Void)) { return true } return false }
func sameType(t, u *cc.Type) bool { t = t.Def() u = u.Def() if t == u { return true } if t == nil || u == nil { return false } if t.Kind != u.Kind { return false } if t.Name != "" || u.Name != "" { return t.Name == u.Name } if !sameType(t.Base, u.Base) || len(t.Decls) != len(u.Decls) { return false } for i, td := range t.Decls { ud := u.Decls[i] if !sameType(td.Type, ud.Type) || t.Kind == cc.Struct && td.Name != ud.Name { return false } } return true }
func (p *Printer) printInit(typ *cc.Type, x *cc.Init) { p.Print(x.Comments.Before) defer p.Print(x.Comments.Suffix, x.Comments.After) if len(x.Prefix) > 0 { for _, pre := range x.Prefix { p.Print(pre) } } if x.Expr != nil { if x.Expr.Op == cc.Number && (typ.Is(cc.Ptr) || typ.Is(Slice)) { p.Print("nil") return } p.printExpr(x.Expr, precComma) return } nl := len(x.Braced) > 0 && x.Braced[0].Span.Start.Line != x.Braced[len(x.Braced)-1].Span.End.Line if typ != nil { p.printType(typ) } p.Print("{") if nl { p.Print(Indent) } warned := false for i, y := range x.Braced { if nl { p.Print(Newline) } else if i > 0 { p.Print(" ") } var subtyp *cc.Type if typ != nil { if typ.Is(cc.Struct) && i < len(typ.Def().Decls) && len(y.Prefix) == 0 { subtyp = typ.Def().Decls[i].Type } else if typ.Is(cc.Struct) && len(y.Prefix) == 1 && y.Prefix[0].XDecl != nil { subtyp = y.Prefix[0].XDecl.Type } else if typ.Is(cc.Array) || typ.Is(Slice) { subtyp = typ.Def().Base } else if !warned { warned = true fprintf(x.Span, "too many fields in braced initializer of %s", GoString(typ)) } } p.printInit(subtyp, y) p.Print(",") } if typ != nil && typ.Is(cc.Struct) && len(x.Braced) > 0 && len(x.Braced[0].Prefix) == 0 && len(x.Braced) < len(typ.Def().Decls) { for i := len(x.Braced); i < len(typ.Def().Decls); i++ { subtyp := typ.Def().Decls[i].Type if subtyp.Is(cc.Ptr) || subtyp.Is(Slice) { p.Print(" nil,") } else if subtyp.Is(cc.Array) { p.Print(" ", subtyp, "{},") } else { p.Print(" 0,") } } } if nl { p.Print(Unindent, Newline) } p.Print("}") }