コード例 #1
0
ファイル: lsh_test.go プロジェクト: wilseypa/rphash-golang
// The datapoints are seeded in so that the first two data points are near eachother in euclidian geometery and the 3rd and 4th datapoint are
// near eachother in euclidian geometery. So the result1Cluster1 and result2Cluster1 should be closer together than the other two points.
// The same is true for the points in cluster two vs either point in cluster one.
func TestLSHSimple(t *testing.T) {
	var seed int64 = 0
	// We want to limit the dimension reduction because it causes a lot of noise.
	var inDimensions, outDimentions, numberOfClusters, numberOfSearches int = 10, 5, 3, 1
	dataPoint1Cluster1 := []float64{1.0, 0.0, 2.0, 7.0, 4.0, 0.0, 8.0, 3.0, 2.0, 1.0}
	dataPoint2Cluster1 := []float64{2.0, 3.0, 2.0, 6.0, 5.5, 2.0, 8.0, 3.1, 2.0, 0.0}

	dataPoint1Cluster2 := []float64{100.0, -120.0, 6.0, 18.0, 209.0, 0.0, -2.0, 1036.0, 15.0, 123.0}
	dataPoint2Cluster2 := []float64{99.0, -119.0, 2.0, 18.0, 208.5, 0.0, -3.0, 1048.0, 13.0, 122.0}

	hash := hash.NewMurmur(1<<63 - 1)
	decoder := decoder.NewSpherical(inDimensions, numberOfClusters, numberOfSearches)
	projector := projector.NewDBFriendly(inDimensions, outDimentions, seed)
	lsh := lsh.NewLSH(hash, decoder, projector)
	result1Cluster1 := lsh.LSHHashSimple(dataPoint1Cluster1)
	result2Cluster1 := lsh.LSHHashSimple(dataPoint2Cluster1)
	result1Cluster2 := lsh.LSHHashSimple(dataPoint1Cluster2)
	result2Cluster2 := lsh.LSHHashSimple(dataPoint2Cluster2)
	// Assert that results are still localy sensetive based on the original euclidian geometry
	if math.Abs(float64(result1Cluster1-result2Cluster1)) > math.Abs(float64(result1Cluster1-result1Cluster2)) {
		t.Errorf("\nThe first datapoint in cluster two is closer to the first data point in cluster one than the second data point in cluster one"+
			"\ndatapoint cluster one datapoint one: %d, \ndatapoint cluster one datapoint two: %d, \ndatapoint cluster two datapoint one: %d",
			result1Cluster1, result2Cluster1, result1Cluster2)
	}
	if math.Abs(float64(result1Cluster1-result2Cluster1)) > math.Abs(float64(result1Cluster1-result2Cluster2)) {
		t.Errorf("\nThe second datapoint in cluster two is closer to the first data point in cluster one than the second data point in cluster one"+
			"\nCluster one datapoint one: %d, \nCluster one datapoint two: %d, \nCluster two datapoint two: %d",
			result1Cluster1, result2Cluster1, result2Cluster2)
	}
	if math.Abs(float64(result1Cluster2-result2Cluster2)) > math.Abs(float64(result1Cluster1-result1Cluster2)) {
		t.Errorf("\nThe first datapoint in cluster one is closer to the first data point in cluster two than the second data point in cluster two"+
			"\nCluster one datapoint one: %d, \nCluster two datapoint one: %d, \nCluster two datapoint two: %d",
			result1Cluster1, result1Cluster2, result2Cluster2)
	}

	t.Log("√ LSH Simple test complete")
}
コード例 #2
0
ファイル: lsh_test.go プロジェクト: wilseypa/rphash-golang
func BenchmarkSimpleLSH(b *testing.B) {
	var seed int64 = 0
	var d, k, l int = 64, 6, 4
	data := []float64{1.0, 0.0, 2.0, 7.0, 4.0, 0.0, 8.0, 3.0, 2.0, 1.0}
	var inDimensions, outDimentions int = 10, 2
	hash := hash.NewMurmur(1<<63 - 1)
	decoder := decoder.NewSpherical(d, k, l)
	projector := projector.NewDBFriendly(inDimensions, outDimentions, seed)
	for i := 0; i < b.N; i++ {
		lsh := lsh.NewLSH(hash, decoder, projector)
		b.StopTimer()
		lsh.LSHHashSimple(data)
		b.StartTimer()
	}
}