// AROWClassify classifies the input using the given model having stateName. func AROWClassify(ctx *core.Context, stateName string, featureVector data.Map) (data.Map, error) { s, err := lookupAROWState(ctx, stateName) if err != nil { return nil, err } scores, err := s.arow.Classify(FeatureVector(featureVector)) return data.Map(scores), err }
func (v FeatureVector) toNNFV() (nearest.FeatureVector, error) { ret := make(nearest.FeatureVector, 0, len(v)) err := nested.Flatten(data.Map(v), func(key string, value float32) { ret = append(ret, nearest.FeatureElement{Dim: key, Value: value}) }) if err != nil { return nil, err } return ret, nil }
func (v FeatureVector) toInternal() (fVector, error) { ret := make(fVector, 0, len(v)) err := nested.Flatten(data.Map(v), func(key string, value float32) { ret = append(ret, fElement{dim: dim(key), value: value}) }) if err != nil { return nil, err } return ret, nil }
// toInternal converts a feature vector to internal format. It requires write lock for intern. func (v FeatureVector) toInternal(intern *intern.Intern) (fVectorForScores, fVector, error) { full := make(fVector, 0, len(v)) err := nested.Flatten(data.Map(v), func(key string, value float32) { full = append(full, fElement{dim(intern.Get(key)), value}) }) if err != nil { return nil, nil, err } return fVectorForScores(full), full, nil }
// toInternalForScores converts a feature vector to internal format. It requires read lock for intern. func (v FeatureVector) toInternalForScores(intern *intern.Intern) (fVectorForScores, error) { ret := make(fVectorForScores, 0, len(v)) err := nested.Flatten(data.Map(v), func(key string, value float32) { if d := intern.GetOrZero(key); d != 0 { ret = append(ret, fElement{dim(d), value}) } }) if err != nil { return nil, err } return ret, nil }