func (this *KnownVarianceLRPosterior) GetSampler() func() *mx.DenseMatrix { if this.sampler == nil { PhiInv, err := this.Phi.Inverse() if err != nil { panic(err) } XXtpPhiInv, err := this.XXt.PlusDense(PhiInv) if err != nil { panic(err) } Omega, err := XXtpPhiInv.Inverse() if err != nil { panic(err) } MPhiInv, err := this.M.TimesDense(PhiInv) if err != nil { panic(err) } YXtpMPhiInv, err := this.YXt.PlusDense(MPhiInv) if err != nil { panic(err) } Mxy, err := YXtpMPhiInv.TimesDense(Omega) if err != nil { panic(err) } this.sampler = stat.MatrixNormal(Mxy, this.Sigma, Omega) } return this.sampler }
/* If Y ~ N(AX, Sigma, I) and A ~ N(M, Sigma, Phi) this returns a sampler for P(A|X,Y,Sigma,M,Phi) */ func KnownVariancePosterior(Y, X, Sigma, M, Phi *mx.DenseMatrix) func() (A *mx.DenseMatrix) { o := Y.Rows() i := X.Rows() n := Y.Cols() if n != X.Cols() { panic("X and Y don't have the same number of columns") } if o != M.Rows() { panic("Y.Rows != M.Rows") } if i != M.Cols() { panic("Y.Rows != M.Cols") } if o != Sigma.Rows() { panic("Y.Rows != Sigma.Rows") } if Sigma.Cols() != Sigma.Rows() { panic("Sigma is not square") } if i != Phi.Rows() { panic("X.Rows != Phi.Rows") } if Phi.Cols() != Phi.Rows() { panic("Phi is not square") } Xt := X.Transpose() PhiInv, err := Phi.Inverse() if err != nil { panic(err) } XXt, err := X.TimesDense(Xt) if err != nil { panic(err) } XXtpPhiInv, err := XXt.PlusDense(PhiInv) if err != nil { panic(err) } Omega, err := XXtpPhiInv.Inverse() if err != nil { panic(err) } YXtpMPhiInv, err := Y.TimesDense(Xt) if err != nil { panic(err) } MPhiInv, err := M.TimesDense(PhiInv) if err != nil { panic(err) } err = YXtpMPhiInv.AddDense(MPhiInv) if err != nil { panic(err) } Mxy, err := YXtpMPhiInv.TimesDense(Omega) if err != nil { panic(err) } if false { fmt.Printf("Mxy:\n%v\n", Mxy) fmt.Printf("Sigma:\n%v\n", Sigma) fmt.Printf("Omega:\n%v\n", Omega) } return stat.MatrixNormal(Mxy, Sigma, Omega) }