//BackProjectGray computes back projection of img // in Gray16 by performing an addition // of backprojection by line. // 16Gray avoids white noise. func BackProjectGray(img image.Gray) (*image.Gray16, error) { size := img.Bounds().Size() width := size.Y nbProj := size.X step := 180.0 / float64(nbProj) out := image.NewGray16(image.Rect(0, 0, width, width)) for X := 0; X < nbProj; X++ { //Extract a 1D-projection (one row Y of sinogram) line := img.SubImage(image.Rect(X, 0, X+1, width)).(*image.Gray) // 3- Do the backprojection and rotate accordingly wideLine := resize.Resize(uint(width), uint(width), line, resize.Lanczos3).(*image.Gray) θ := manipulator.Rad(float64(X)*step) + math.Pi/2 rotatedWideLine := image.NewGray(image.Rect(0, 0, width, width)) err := graphics.Rotate(rotatedWideLine, wideLine, &graphics.RotateOptions{Angle: θ}) if err != nil { return out, err } // 4- Add the rotated backprojection in the output image for x := 0; x < width; x++ { for y := 0; y < width; y++ { point := uint16(out.At(x, y).(color.Gray16).Y) + uint16(rotatedWideLine.At(x, y).(color.Gray).Y) out.Set(x, y, color.Gray16{uint16(point)}) } } } return out, nil }
func (g *generator) buildTerrain(mpath minecraft.Path, level *level, terrain, biomes, plants *image.Paletted, height, water *image.Gray, c chan paint) error { b := terrain.Bounds() proceed := make(chan uint8, 10) errChan := make(chan error, 1) go func() { defer close(proceed) cc := newCache(g.Terrain.Blocks) for j := 0; j < b.Max.Y; j += 16 { chunkZ := int32(j >> 4) for i := 0; i < b.Max.X; i += 16 { chunkX := int32(i >> 4) h := int32(meanHeight(height.SubImage(image.Rect(i, j, i+16, j+16)).(*image.Gray))) wh := int32(meanHeight(water.SubImage(image.Rect(i, j, i+16, j+16)).(*image.Gray))) var t uint8 if wh >= h<<1 { // more water than land... c <- paint{ color.RGBA{0, 0, 255, 255}, chunkX, chunkZ, } t = uint8(len(g.Terrain.Blocks) - 1) h = wh } else { t = modeTerrain(terrain.SubImage(image.Rect(i, j, i+16, j+16)).(*image.Paletted), len(g.Terrain.Palette)) c <- paint{ g.Terrain.Palette[t], chunkX, chunkZ, } } if err := mpath.SetChunk(cc.getFromCache(chunkX, chunkZ, t, h)); err != nil { errChan <- err return } proceed <- t } } }() ts := make([]uint8, 0, 1024) for i := 0; i < (b.Max.X>>4)+2; i++ { ts = append(ts, <-proceed) // get far enough ahead so all chunks are surrounded before shaping, to get correct lighting } select { case err := <-errChan: return err default: } for j := int32(0); j < int32(b.Max.Y); j += 16 { chunkZ := j >> 4 for i := int32(0); i < int32(b.Max.X); i += 16 { chunkX := i >> 4 var totalHeight int32 ot := ts[0] ts = ts[1:] oy, _ := level.GetHeight(i, j) for x := i; x < i+16; x++ { for z := j; z < j+16; z++ { if biomes != nil { level.SetBiome(x, z, g.Biomes.Values[biomes.ColorIndexAt(int(x), int(z))]) } h := int32(height.GrayAt(int(x), int(z)).Y) totalHeight += h wl := int32(water.GrayAt(int(x), int(z)).Y) y := oy if h > y { y = h } if wl > y { y = wl } for ; y > h && y > wl; y-- { level.SetBlock(x, y, z, minecraft.Block{}) } if plants != nil { p := g.Plants.Blocks[plants.ColorIndexAt(int(x), int(z))] py := int32(1) for ; py <= int32(p.Level); py++ { level.SetBlock(x, y+py, z, p.Base) } level.SetBlock(x, y+py, z, p.Top) } for ; y > h; y-- { level.SetBlock(x, y, z, minecraft.Block{ID: 9}) } t := terrain.ColorIndexAt(int(x), int(z)) tb := g.Terrain.Blocks[t] for ; y > h-int32(tb.Level); y-- { level.SetBlock(x, y, z, tb.Top) } if t != ot { h = 0 } else { h = oy } for ; y >= h; y-- { level.SetBlock(x, y, z, tb.Base) } } } c <- paint{ color.Alpha{uint8(totalHeight >> 8)}, chunkX, chunkZ, } select { case p, ok := <-proceed: if ok { ts = append(ts, p) } case err := <-errChan: return err } } } return nil }
func blobAt(x, y int, img *image.Gray, vis []bool) *Blob { if img.GrayAt(x, y) == white { return nil } width := img.Bounds().Max.X height := img.Bounds().Max.Y r := image.Rect(x, y, x, y) q := newQueue() q.q(point{x, y}) for q.length != 0 { p := q.dq() if vis[p.x+width*p.y] { continue } vis[p.x+width*p.y] = true if p.x > r.Max.X { r.Max.X = p.x } if p.x < r.Min.X { r.Min.X = p.x } if p.y > r.Max.Y { r.Max.Y = p.y } if p.y < r.Min.Y { r.Min.Y = p.y } // Up if p.y-1 >= 0 { if !vis[p.x+(p.y-1)*width] && img.GrayAt(p.x, p.y-1) == black { q.q(point{p.x, p.y - 1}) } } // Right if p.x+1 < width { if !vis[p.x+1+p.y*width] && img.GrayAt(p.x+1, p.y) == black { q.q(point{p.x + 1, p.y}) } } // Down if p.y+1 < height { if !vis[p.x+(p.y+1)*width] && img.GrayAt(p.x, p.y+1) == black { q.q(point{p.x, p.y + 1}) } } // Left if p.x-1 >= 0 { if !vis[p.x-1+p.y*width] && img.GrayAt(p.x-1, p.y) == black { q.q(point{p.x - 1, p.y}) } } } r.Max.Y += 1 r.Max.X += 1 return &Blob{Bounds: r, Img: img.SubImage(r)} }