func calculateBalancedResourceAllocation(pod *api.Pod, node api.Node, pods []*api.Pod) schedulerapi.HostPriority { totalMilliCPU := int64(0) totalMemory := int64(0) score := int(0) for _, existingPod := range pods { for _, container := range existingPod.Spec.Containers { cpu, memory := priorityutil.GetNonzeroRequests(&container.Resources.Requests) totalMilliCPU += cpu totalMemory += memory } } // Add the resources requested by the current pod being scheduled. // This also helps differentiate between differently sized, but empty, nodes. for _, container := range pod.Spec.Containers { cpu, memory := priorityutil.GetNonzeroRequests(&container.Resources.Requests) totalMilliCPU += cpu totalMemory += memory } capacityMilliCPU := node.Status.Allocatable.Cpu().MilliValue() capacityMemory := node.Status.Allocatable.Memory().Value() cpuFraction := fractionOfCapacity(totalMilliCPU, capacityMilliCPU) memoryFraction := fractionOfCapacity(totalMemory, capacityMemory) if cpuFraction >= 1 || memoryFraction >= 1 { // if requested >= capacity, the corresponding host should never be preferrred. score = 0 } else { // Upper and lower boundary of difference between cpuFraction and memoryFraction are -1 and 1 // respectively. Multilying the absolute value of the difference by 10 scales the value to // 0-10 with 0 representing well balanced allocation and 10 poorly balanced. Subtracting it from // 10 leads to the score which also scales from 0 to 10 while 10 representing well balanced. diff := math.Abs(cpuFraction - memoryFraction) score = int(10 - diff*10) } glog.V(10).Infof( "%v -> %v: Balanced Resource Allocation, Absolute/Requested: (%d, %d) / (%d, %d) Score: (%d)", pod.Name, node.Name, totalMilliCPU, totalMemory, capacityMilliCPU, capacityMemory, score, ) return schedulerapi.HostPriority{ Host: node.Name, Score: score, } }
func calculateResource(pod *v1.Pod) (res Resource, non0_cpu int64, non0_mem int64) { for _, c := range pod.Spec.Containers { for rName, rQuant := range c.Resources.Requests { switch rName { case v1.ResourceCPU: res.MilliCPU += rQuant.MilliValue() case v1.ResourceMemory: res.Memory += rQuant.Value() case v1.ResourceNvidiaGPU: res.NvidiaGPU += rQuant.Value() default: if v1.IsOpaqueIntResourceName(rName) { // Lazily allocate opaque resource map. if res.OpaqueIntResources == nil { res.OpaqueIntResources = map[v1.ResourceName]int64{} } res.OpaqueIntResources[rName] += rQuant.Value() } } } non0_cpu_req, non0_mem_req := priorityutil.GetNonzeroRequests(&c.Resources.Requests) non0_cpu += non0_cpu_req non0_mem += non0_mem_req // No non-zero resources for GPUs or opaque resources. } return }
// Calculate the resource occupancy on a node. 'node' has information about the resources on the node. // 'pods' is a list of pods currently scheduled on the node. func calculateResourceOccupancy(pod *api.Pod, node api.Node, nodeInfo *schedulercache.NodeInfo) schedulerapi.HostPriority { totalMilliCPU := nodeInfo.NonZeroRequest().MilliCPU totalMemory := nodeInfo.NonZeroRequest().Memory capacityMilliCPU := node.Status.Allocatable.Cpu().MilliValue() capacityMemory := node.Status.Allocatable.Memory().Value() // Add the resources requested by the current pod being scheduled. // This also helps differentiate between differently sized, but empty, nodes. for _, container := range pod.Spec.Containers { cpu, memory := priorityutil.GetNonzeroRequests(&container.Resources.Requests) totalMilliCPU += cpu totalMemory += memory } cpuScore := calculateScore(totalMilliCPU, capacityMilliCPU, node.Name) memoryScore := calculateScore(totalMemory, capacityMemory, node.Name) glog.V(10).Infof( "%v -> %v: Least Requested Priority, capacity %d millicores %d memory bytes, total request %d millicores %d memory bytes, score %d CPU %d memory", pod.Name, node.Name, capacityMilliCPU, capacityMemory, totalMilliCPU, totalMemory, cpuScore, memoryScore, ) return schedulerapi.HostPriority{ Host: node.Name, Score: int((cpuScore + memoryScore) / 2), } }
// Also used in most/least_requested nad metadata. // TODO: despaghettify it func getNonZeroRequests(pod *api.Pod) *schedulercache.Resource { result := &schedulercache.Resource{} for i := range pod.Spec.Containers { container := &pod.Spec.Containers[i] cpu, memory := priorityutil.GetNonzeroRequests(&container.Resources.Requests) result.MilliCPU += cpu result.Memory += memory } return result }
func calculateResource(pod *api.Pod) (cpu int64, mem int64, non0_cpu int64, non0_mem int64) { for _, c := range pod.Spec.Containers { req := c.Resources.Requests cpu += req.Cpu().MilliValue() mem += req.Memory().Value() non0_cpu_req, non0_mem_req := priorityutil.GetNonzeroRequests(&req) non0_cpu += non0_cpu_req non0_mem += non0_mem_req } return }
// Calculate the resource occupancy on a node. 'node' has information about the resources on the node. // 'pods' is a list of pods currently scheduled on the node. func calculateResourceOccupancy(pod *api.Pod, node api.Node, pods []*api.Pod) schedulerapi.HostPriority { totalMilliCPU := int64(0) totalMemory := int64(0) capacityMilliCPU := node.Status.Allocatable.Cpu().MilliValue() capacityMemory := node.Status.Allocatable.Memory().Value() for _, existingPod := range pods { for _, container := range existingPod.Spec.Containers { cpu, memory := priorityutil.GetNonzeroRequests(&container.Resources.Requests) totalMilliCPU += cpu totalMemory += memory } } // Add the resources requested by the current pod being scheduled. // This also helps differentiate between differently sized, but empty, nodes. for _, container := range pod.Spec.Containers { cpu, memory := priorityutil.GetNonzeroRequests(&container.Resources.Requests) totalMilliCPU += cpu totalMemory += memory } cpuScore := calculateScore(totalMilliCPU, capacityMilliCPU, node.Name) memoryScore := calculateScore(totalMemory, capacityMemory, node.Name) glog.V(10).Infof( "%v -> %v: Least Requested Priority, Absolute/Requested: (%d, %d) / (%d, %d) Score: (%d, %d)", pod.Name, node.Name, totalMilliCPU, totalMemory, capacityMilliCPU, capacityMemory, cpuScore, memoryScore, ) return schedulerapi.HostPriority{ Host: node.Name, Score: int((cpuScore + memoryScore) / 2), } }