// Func = Name FunctionType . func (p *parser) parseFunc(pkg *types.Package) *types.Func { name := p.parseName() if strings.ContainsRune(name, '$') { // This is a Type$equal or Type$hash function, which we don't want to parse, // except for the types. p.discardDirectiveWhileParsingTypes(pkg) return nil } return types.NewFunc(token.NoPos, pkg, name, p.parseFunctionType(pkg)) }
// InterfaceType = "interface" "{" [ MethodList ] "}" . // MethodList = Method { ";" Method } . // Method = Name Signature . // // The methods of embedded interfaces are always "inlined" // by the compiler and thus embedded interfaces are never // visible in the export data. // func (p *parser) parseInterfaceType() types.Type { var methods []*types.Func p.expectKeyword("interface") p.expect('{') for i := 0; p.tok != '}' && p.tok != scanner.EOF; i++ { if i > 0 { p.expect(';') } pkg, name := p.parseName(true) sig := p.parseSignature(nil) methods = append(methods, types.NewFunc(token.NoPos, pkg, name, sig)) } p.expect('}') // Complete requires the type's embedded interfaces to be fully defined, // but we do not define any return types.NewInterface(methods, nil).Complete() }
// MethodDecl = "func" Receiver Name Func . // Receiver = "(" ( identifier | "?" ) [ "*" ] ExportedName ")" . // func (p *parser) parseMethodDecl() { // "func" already consumed p.expect('(') recv, _ := p.parseParameter() // receiver p.expect(')') // determine receiver base type object base := deref(recv.Type()).(*types.Named) // parse method name, signature, and possibly inlined body _, name := p.parseName(true) sig := p.parseFunc(recv) // methods always belong to the same package as the base type object pkg := base.Obj().Pkg() // add method to type unless type was imported before // and method exists already // TODO(gri) This leads to a quadratic algorithm - ok for now because method counts are small. base.AddMethod(types.NewFunc(token.NoPos, pkg, name, sig)) }
func (p *importer) obj(pkg *types.Package) { var obj types.Object switch tag := p.int(); tag { case constTag: obj = types.NewConst(token.NoPos, pkg, p.string(), p.typ(), p.value()) case typeTag: // type object is added to scope via respective named type _ = p.typ().(*types.Named) return case varTag: obj = types.NewVar(token.NoPos, pkg, p.string(), p.typ()) case funcTag: obj = types.NewFunc(token.NoPos, pkg, p.string(), p.typ().(*types.Signature)) default: panic(fmt.Sprintf("unexpected object tag %d", tag)) } if alt := pkg.Scope().Insert(obj); alt != nil { panic(fmt.Sprintf("%s already declared", alt.Name())) } }
// NamedType = TypeName Type { Method } . // Method = "func" "(" Param ")" Name ParamList ResultList ";" . func (p *parser) parseNamedType(n int) types.Type { obj := p.parseTypeName() pkg := obj.Pkg() typ := obj.Type() p.typeMap[n] = typ nt, ok := typ.(*types.Named) if !ok { // This can happen for unsafe.Pointer, which is a TypeName holding a Basic type. pt := p.parseType(pkg) if pt != typ { p.error("unexpected underlying type for non-named TypeName") } return typ } underlying := p.parseType(pkg) if nt.Underlying() == nil { nt.SetUnderlying(underlying.Underlying()) } for p.tok == scanner.Ident { // collect associated methods p.expectKeyword("func") p.expect('(') receiver, _ := p.parseParam(pkg) p.expect(')') name := p.parseName() params, isVariadic := p.parseParamList(pkg) results := p.parseResultList(pkg) p.expect(';') sig := types.NewSignature(pkg.Scope(), receiver, params, results, isVariadic) nt.AddMethod(types.NewFunc(token.NoPos, pkg, name, sig)) } return nt }
// CreateTestMainPackage creates and returns a synthetic "main" // package that runs all the tests of the supplied packages, similar // to the one that would be created by the 'go test' tool. // // It returns nil if the program contains no tests. // func (prog *Program) CreateTestMainPackage(pkgs ...*Package) *Package { pkgs, tests, benchmarks, examples := FindTests(pkgs) if len(pkgs) == 0 { return nil } testmain := &Package{ Prog: prog, Members: make(map[string]Member), values: make(map[types.Object]Value), Object: types.NewPackage("test$main", "main"), } // Build package's init function. init := &Function{ name: "init", Signature: new(types.Signature), Synthetic: "package initializer", Pkg: testmain, Prog: prog, } init.startBody() if testMainStartBodyHook != nil { testMainStartBodyHook(init) } // Initialize packages to test. var pkgpaths []string for _, pkg := range pkgs { var v Call v.Call.Value = pkg.init v.setType(types.NewTuple()) init.emit(&v) pkgpaths = append(pkgpaths, pkg.Object.Path()) } sort.Strings(pkgpaths) init.emit(new(Return)) init.finishBody() testmain.init = init testmain.Object.MarkComplete() testmain.Members[init.name] = init // For debugging convenience, define an unexported const // that enumerates the packages. packagesConst := types.NewConst(token.NoPos, testmain.Object, "packages", tString, exact.MakeString(strings.Join(pkgpaths, " "))) memberFromObject(testmain, packagesConst, nil) // Create main *types.Func and *ssa.Function mainFunc := types.NewFunc(token.NoPos, testmain.Object, "main", new(types.Signature)) memberFromObject(testmain, mainFunc, nil) main := testmain.Func("main") main.Synthetic = "test main function" main.startBody() if testMainStartBodyHook != nil { testMainStartBodyHook(main) } if testingPkg := prog.ImportedPackage("testing"); testingPkg != nil { testingMain := testingPkg.Func("Main") testingMainParams := testingMain.Signature.Params() // The generated code is as if compiled from this: // // func main() { // match := func(_, _ string) (bool, error) { return true, nil } // tests := []testing.InternalTest{{"TestFoo", TestFoo}, ...} // benchmarks := []testing.InternalBenchmark{...} // examples := []testing.InternalExample{...} // testing.Main(match, tests, benchmarks, examples) // } matcher := &Function{ name: "matcher", Signature: testingMainParams.At(0).Type().(*types.Signature), Synthetic: "test matcher predicate", parent: main, Pkg: testmain, Prog: prog, } main.AnonFuncs = append(main.AnonFuncs, matcher) matcher.startBody() matcher.emit(&Return{Results: []Value{vTrue, nilConst(types.Universe.Lookup("error").Type())}}) matcher.finishBody() // Emit call: testing.Main(matcher, tests, benchmarks, examples). var c Call c.Call.Value = testingMain c.Call.Args = []Value{ matcher, testMainSlice(main, tests, testingMainParams.At(1).Type()), testMainSlice(main, benchmarks, testingMainParams.At(2).Type()), testMainSlice(main, examples, testingMainParams.At(3).Type()), } emitTailCall(main, &c) } else { // The program does not import "testing", but FindTests // returned non-nil, which must mean there were Examples // but no Tests or Benchmarks. // We'll simply call them from testmain.main; this will // ensure they don't panic, but will not check any // "Output:" comments. for _, eg := range examples { var c Call c.Call.Value = eg c.setType(types.NewTuple()) main.emit(&c) } main.emit(&Return{}) main.currentBlock = nil } main.finishBody() testmain.Members["main"] = main if prog.mode&PrintPackages != 0 { printMu.Lock() testmain.WriteTo(os.Stdout) printMu.Unlock() } if prog.mode&SanityCheckFunctions != 0 { sanityCheckPackage(testmain) } prog.packages[testmain.Object] = testmain return testmain }
// FuncDecl = "func" ExportedName Func . // func (p *parser) parseFuncDecl() { // "func" already consumed pkg, name := p.parseExportedName() typ := p.parseFunc(nil) pkg.Scope().Insert(types.NewFunc(token.NoPos, pkg, name, typ)) }
func (p *importer) typ() types.Type { // if the type was seen before, i is its index (>= 0) i := p.int() if i >= 0 { return p.typList[i] } // otherwise, i is the type tag (< 0) switch i { case arrayTag: t := new(types.Array) p.record(t) n := p.int64() *t = *types.NewArray(p.typ(), n) return t case sliceTag: t := new(types.Slice) p.record(t) *t = *types.NewSlice(p.typ()) return t case structTag: t := new(types.Struct) p.record(t) n := p.int() fields := make([]*types.Var, n) tags := make([]string, n) for i := range fields { fields[i] = p.field() tags[i] = p.string() } *t = *types.NewStruct(fields, tags) return t case pointerTag: t := new(types.Pointer) p.record(t) *t = *types.NewPointer(p.typ()) return t case signatureTag: t := new(types.Signature) p.record(t) *t = *p.signature() return t case interfaceTag: // Create a dummy entry in the type list. This is safe because we // cannot expect the interface type to appear in a cycle, as any // such cycle must contain a named type which would have been // first defined earlier. n := len(p.typList) p.record(nil) // read embedded interfaces embeddeds := make([]*types.Named, p.int()) for i := range embeddeds { embeddeds[i] = p.typ().(*types.Named) } // read methods methods := make([]*types.Func, p.int()) for i := range methods { pkg, name := p.qualifiedName() methods[i] = types.NewFunc(token.NoPos, pkg, name, p.typ().(*types.Signature)) } t := types.NewInterface(methods, embeddeds) p.typList[n] = t return t case mapTag: t := new(types.Map) p.record(t) *t = *types.NewMap(p.typ(), p.typ()) return t case chanTag: t := new(types.Chan) p.record(t) *t = *types.NewChan(types.ChanDir(p.int()), p.typ()) return t case namedTag: // read type object name := p.string() pkg := p.pkg() scope := pkg.Scope() obj := scope.Lookup(name) // if the object doesn't exist yet, create and insert it if obj == nil { obj = types.NewTypeName(token.NoPos, pkg, name, nil) scope.Insert(obj) } // associate new named type with obj if it doesn't exist yet t0 := types.NewNamed(obj.(*types.TypeName), nil, nil) // but record the existing type, if any t := obj.Type().(*types.Named) p.record(t) // read underlying type t0.SetUnderlying(p.typ()) // read associated methods for i, n := 0, p.int(); i < n; i++ { t0.AddMethod(types.NewFunc(token.NoPos, pkg, p.string(), p.typ().(*types.Signature))) } return t default: panic(fmt.Sprintf("unexpected type tag %d", i)) } }