func (this *TrainingSet) Variance_sum(i0, i1 int, mean *Matrix.Matrix, res **Matrix.Matrix, sustract *Matrix.Matrix, done chan<- bool) { di := i1 - i0 if di >= THRESHOLD { mi := i0 + di/2 done2 := make(chan bool, THRESHOLD) res1 := Matrix.NullMatrixP(1, this.Xs.GetNColumns()) res2 := Matrix.NullMatrixP(1, this.Xs.GetNColumns()) go this.Variance_sum(i0, mi, mean, &res1, sustract, done2) go this.Variance_sum(mi, i1, mean, &res1, sustract, done2) <-done2 <-done2 SP, _ := Matrix.Sum(res1, res2) *res = SP } else { for i := i0; i <= i1; i++ { xsi := this.Xs.GetRow(i) Sustract, _ := Matrix.Sustract(mean, xsi) Square := Matrix.DotMultiplication(Sustract, Sustract) sustract.SetRow(i, Sustract) SP, _ := Matrix.Sum(Square, *res) *res = SP } } done <- true }
func DSoftmax(X *Matrix.Matrix) *Matrix.Matrix { Total := 1 / X.TaxicabNorm() Y := X.Scalar(complex(Total, 0)) S, _ := Matrix.Sustract(Matrix.FixValueMatrix(X.GetNColumns(), X.GetNColumns(), 1.0), X) YD := Matrix.DotMultiplication(Y, S) return YD }
func DerivateHalfDistance(T, O *Matrix.Matrix) *Matrix.Matrix { r, _ := Matrix.Sustract(T, O) return r }
func GradientDescent(alpha complex128, Tolerance complex128, ts *TrainingSet, f func(x complex128) complex128) *Hypothesis { n := ts.Xs.GetNColumns() m := ts.Xs.GetMRows() //Xsc:=ts.Xs.Copy() ts.AddX0() // add the parametrer x0, with value 1, to all elements of the training set t := Matrix.NullMatrixP(1, n+1) // put 0 to the parameters theta thetaP := t //thetaP:=Matrix.RandomMatrix(1,n+1) // Generates a random values of parameters theta var h1 Hypothesis h1.H = f h1.ThetaParameters = thetaP var Error complex128 Error = complex(1.0, 0) var it = 1 diferencia, diferenciaT := h1.Parallel_DiffH1Ys(ts) jt := Matrix.Product(diferenciaT, diferencia).Scalar(1/complex(2.0*float64(m), 0.0)).GetValue(1, 1) alpha = 1 / jt for cmplx.Abs(Error) >= cmplx.Abs(Tolerance) { // Until converges ThetaPB := h1.ThetaParameters.Copy() //for Error Calc //diff:=h1.DiffH1Ys(ts) _, diffT := h1.Parallel_DiffH1Ys(ts) //h(x)-y product := Matrix.Product(diffT, ts.Xs) //Sum( (hi(xi)-yi)*xij) in matrix form h1.Sum = product alpha_it := alpha / (cmplx.Sqrt(complex(float64(it), 0.0))) // re-calc alpha scalar := product.Scalar(-alpha_it / complex(float64(m), 0.0)) //println("Delta", scalar.ToString()) ThetaTemp, _ := Matrix.Sum(h1.ThetaParameters, scalar) //Theas=Theas-alfa/m*Sum( (hi(xi)-yi)*xij) update the parameters h1.ThetaParameters = ThetaTemp diffError, _ := Matrix.Sustract(ThetaPB, h1.ThetaParameters) //diff between theta's Vector , calc the error Error = complex(diffError.FrobeniusNorm(), 0) //Frobenius Norm //Error=diffError.InfinityNorm() //Infinty Norm //println("->", h1.ThetaParameters.ToString()) //println("Error", Error) /*if it > 10 { break }*/ it++ } h1.M = m return &h1 }