//go:nowritebarrier // We might not be holding a p in this code. func unlock(l *mutex) { gp := getg() var mp *m for { v := atomic.Loaduintptr(&l.key) if v == locked { if atomic.Casuintptr(&l.key, locked, 0) { break } } else { // Other M's are waiting for the lock. // Dequeue an M. mp = (*m)(unsafe.Pointer(v &^ locked)) if atomic.Casuintptr(&l.key, v, mp.nextwaitm) { // Dequeued an M. Wake it. semawakeup(mp) break } } } gp.m.locks-- if gp.m.locks < 0 { throw("runtime·unlock: lock count") } if gp.m.locks == 0 && gp.preempt { // restore the preemption request in case we've cleared it in newstack gp.stackguard0 = stackPreempt } }
func lock(l *mutex) { gp := getg() if gp.m.locks < 0 { throw("runtime·lock: lock count") } gp.m.locks++ // Speculative grab for lock. if atomic.Casuintptr(&l.key, 0, locked) { return } semacreate(gp.m) // On uniprocessor's, no point spinning. // On multiprocessors, spin for ACTIVE_SPIN attempts. spin := 0 if ncpu > 1 { spin = active_spin } Loop: for i := 0; ; i++ { v := atomic.Loaduintptr(&l.key) if v&locked == 0 { // Unlocked. Try to lock. if atomic.Casuintptr(&l.key, v, v|locked) { return } i = 0 } if i < spin { procyield(active_spin_cnt) } else if i < spin+passive_spin { osyield() } else { // Someone else has it. // l->waitm points to a linked list of M's waiting // for this lock, chained through m->nextwaitm. // Queue this M. for { gp.m.nextwaitm = v &^ locked if atomic.Casuintptr(&l.key, v, uintptr(unsafe.Pointer(gp.m))|locked) { break } v = atomic.Loaduintptr(&l.key) if v&locked == 0 { continue Loop } } if v&locked != 0 { // Queued. Wait. semasleep(-1) i = 0 } } } }
func netpollunblock(pd *pollDesc, mode int32, ioready bool) *g { gpp := &pd.rg if mode == 'w' { gpp = &pd.wg } for { old := *gpp if old == pdReady { return nil } if old == 0 && !ioready { // Only set READY for ioready. runtime_pollWait // will check for timeout/cancel before waiting. return nil } var new uintptr if ioready { new = pdReady } if atomic.Casuintptr(gpp, old, new) { if old == pdReady || old == pdWait { old = 0 } return (*g)(unsafe.Pointer(old)) } } }
// returns true if IO is ready, or false if timedout or closed // waitio - wait only for completed IO, ignore errors func netpollblock(pd *pollDesc, mode int32, waitio bool) bool { gpp := &pd.rg if mode == 'w' { gpp = &pd.wg } // set the gpp semaphore to WAIT for { old := *gpp if old == pdReady { *gpp = 0 return true } if old != 0 { throw("netpollblock: double wait") } if atomic.Casuintptr(gpp, 0, pdWait) { break } } // need to recheck error states after setting gpp to WAIT // this is necessary because runtime_pollUnblock/runtime_pollSetDeadline/deadlineimpl // do the opposite: store to closing/rd/wd, membarrier, load of rg/wg if waitio || netpollcheckerr(pd, mode) == 0 { gopark(netpollblockcommit, unsafe.Pointer(gpp), "IO wait", traceEvGoBlockNet, 5) } // be careful to not lose concurrent READY notification old := atomic.Xchguintptr(gpp, 0) if old > pdWait { throw("netpollblock: corrupted state") } return old == pdReady }
// lockextra locks the extra list and returns the list head. // The caller must unlock the list by storing a new list head // to extram. If nilokay is true, then lockextra will // return a nil list head if that's what it finds. If nilokay is false, // lockextra will keep waiting until the list head is no longer nil. //go:nosplit func lockextra(nilokay bool) *m { const locked = 1 incr := false for { old := atomic.Loaduintptr(&extram) if old == locked { yield := osyield yield() continue } if old == 0 && !nilokay { if !incr { // Add 1 to the number of threads // waiting for an M. // This is cleared by newextram. atomic.Xadd(&extraMWaiters, 1) incr = true } usleep(1) continue } if atomic.Casuintptr(&extram, old, locked) { return (*m)(unsafe.Pointer(old)) } yield := osyield yield() continue } }
//go:nosplit func gostringnocopy(str *byte) string { ss := stringStruct{str: unsafe.Pointer(str), len: findnull(str)} s := *(*string)(unsafe.Pointer(&ss)) for { ms := maxstring if uintptr(len(s)) <= ms || atomic.Casuintptr(&maxstring, ms, uintptr(len(s))) { break } } return s }
// rawstring allocates storage for a new string. The returned // string and byte slice both refer to the same storage. // The storage is not zeroed. Callers should use // b to set the string contents and then drop b. func rawstring(size int) (s string, b []byte) { p := mallocgc(uintptr(size), nil, flagNoScan|flagNoZero) stringStructOf(&s).str = p stringStructOf(&s).len = size *(*slice)(unsafe.Pointer(&b)) = slice{p, size, size} for { ms := maxstring if uintptr(size) <= ms || atomic.Casuintptr((*uintptr)(unsafe.Pointer(&maxstring)), ms, uintptr(size)) { return } } }
func notesleep(n *note) { gp := getg() if gp != gp.m.g0 { throw("notesleep not on g0") } semacreate(gp.m) if !atomic.Casuintptr(&n.key, 0, uintptr(unsafe.Pointer(gp.m))) { // Must be locked (got wakeup). if n.key != locked { throw("notesleep - waitm out of sync") } return } // Queued. Sleep. gp.m.blocked = true semasleep(-1) gp.m.blocked = false }
func notewakeup(n *note) { var v uintptr for { v = atomic.Loaduintptr(&n.key) if atomic.Casuintptr(&n.key, v, locked) { break } } // Successfully set waitm to locked. // What was it before? switch { case v == 0: // Nothing was waiting. Done. case v == locked: // Two notewakeups! Not allowed. throw("notewakeup - double wakeup") default: // Must be the waiting m. Wake it up. semawakeup((*m)(unsafe.Pointer(v))) } }
func notesleep(n *note) { gp := getg() // Currently OK to sleep in non-g0 for gccgo. It happens in // stoptheworld because we have not implemented preemption. // if gp != gp.m.g0 { // throw("notesleep not on g0") // } semacreate(gp.m) if !atomic.Casuintptr(&n.key, 0, uintptr(unsafe.Pointer(gp.m))) { // Must be locked (got wakeup). if n.key != mutex_locked { throw("notesleep - waitm out of sync") } return } // Queued. Sleep. gp.m.blocked = true semasleep(-1) gp.m.blocked = false }
//go:nosplit func (gp *guintptr) cas(old, new guintptr) bool { return atomic.Casuintptr((*uintptr)(unsafe.Pointer(gp)), uintptr(old), uintptr(new)) }
func netpollblockcommit(gp *g, gpp unsafe.Pointer) bool { return atomic.Casuintptr((*uintptr)(gpp), pdWait, uintptr(unsafe.Pointer(gp))) }
//go:nosplit func notetsleep_internal(n *note, ns int64, gp *g, deadline int64) bool { // gp and deadline are logically local variables, but they are written // as parameters so that the stack space they require is charged // to the caller. // This reduces the nosplit footprint of notetsleep_internal. gp = getg() // Register for wakeup on n->waitm. if !atomic.Casuintptr(&n.key, 0, uintptr(unsafe.Pointer(gp.m))) { // Must be locked (got wakeup). if n.key != locked { throw("notetsleep - waitm out of sync") } return true } if ns < 0 { // Queued. Sleep. gp.m.blocked = true semasleep(-1) gp.m.blocked = false return true } deadline = nanotime() + ns for { // Registered. Sleep. gp.m.blocked = true if semasleep(ns) >= 0 { gp.m.blocked = false // Acquired semaphore, semawakeup unregistered us. // Done. return true } gp.m.blocked = false // Interrupted or timed out. Still registered. Semaphore not acquired. ns = deadline - nanotime() if ns <= 0 { break } // Deadline hasn't arrived. Keep sleeping. } // Deadline arrived. Still registered. Semaphore not acquired. // Want to give up and return, but have to unregister first, // so that any notewakeup racing with the return does not // try to grant us the semaphore when we don't expect it. for { v := atomic.Loaduintptr(&n.key) switch v { case uintptr(unsafe.Pointer(gp.m)): // No wakeup yet; unregister if possible. if atomic.Casuintptr(&n.key, v, 0) { return false } case locked: // Wakeup happened so semaphore is available. // Grab it to avoid getting out of sync. gp.m.blocked = true if semasleep(-1) < 0 { throw("runtime: unable to acquire - semaphore out of sync") } gp.m.blocked = false return true default: throw("runtime: unexpected waitm - semaphore out of sync") } } }