func (p *Parser) Parse() *tp.ScriptObject { script := new(tp.ScriptObject) // script.Name = proto.String(p.FullPath) if !p.RootFile || TritiumParserShowRewriterFileName { script.Name = proto.String(filepath.Join(p.ScriptPath, p.FileName)) } else { script.Name = proto.String("__rewriter__") } stmts := tp.ListInstructions() defs := make([]*tp.Function, 0) // Add a new constructor in instruction.go // Look for the namespace directive first. if p.peek().Lexeme == NAMESPACE { p.namespaces() } for p.peek().Lexeme != EOF { switch p.peek().Lexeme { case FUNC: defs = append(defs, p.definition()) case OPEN: p.open(false) default: stmt := p.statement() stmts = append(stmts, stmt) // need to intersperse imports with definitions if constants.Instruction_InstructionType_name[int32(stmt.GetType())] == "IMPORT" { // Make a special function stub that represents the import. // Need to do this because we can't mix definitions and instructions in // the same array. imp := new(tp.Function) imp.Name = proto.String("@import") imp.Description = proto.String(stmt.GetValue()) defs = append(defs, imp) } } } if len(defs) == 0 { defs = nil } var line int32 if len(stmts) == 0 { stmts = nil } else { line = *stmts[0].LineNumber } script.Functions = defs script.Root = tp.MakeBlock(stmts, line) // if defs == nil && p.currentNamespace() != "tritium" { // panic(fmt.Sprintf("%s: %d -- custom modules may only be declared in function definition files", p.FileName, moduleLineNum)) // } return script }
func (p *Parser) call(funcName *Token) (node *tp.Instruction) { funcNameStr := funcName.Value // grab the function name funcLineNo := funcName.LineNumber if p.peek().Lexeme != LPAREN { p.error("parenthesized argument list expected in call to " + funcNameStr) } p.pop() // pop the lparen ords, kwdnames, kwdvals := p.arguments(funcNameStr) // gather the arguments numArgs := len(ords) // this will never happen because p.arguments() only returns when it encounters an rparen if p.peek().Lexeme != RPAREN { p.error("unterminated argument list in call to " + funcNameStr) } p.pop() // pop the rparen var block []*tp.Instruction if p.peek().Lexeme == LBRACE { block = p.block() } // Expand keyword args if kwdnames != nil && kwdvals != nil { kwdToGensym := make(map[string]string, len(kwdnames)) outer := tp.ListInstructions() for i, k := range kwdnames { tempname := p.gensym() tempvar := tp.MakeFunctionCall("var", tp.ListInstructions(tp.MakeText(tempname, funcLineNo), kwdvals[i]), nil, funcLineNo) outer = append(outer, tempvar) kwdToGensym[k] = tempname } inner := tp.ListInstructions() for _, k := range kwdnames { getter := tp.MakeFunctionCall("var", tp.ListInstructions(tp.MakeText(kwdToGensym[k], funcLineNo)), nil, funcLineNo) setter := tp.MakeFunctionCall("set", tp.ListInstructions(tp.MakeText(k, funcLineNo), getter), nil, funcLineNo) inner = append(inner, setter) } if block != nil { for _, v := range block { inner = append(inner, v) } } theCall := tp.MakeFunctionCall(funcNameStr, ords, inner, funcLineNo) outer = append(outer, theCall) node = tp.MakeBlock(outer, funcLineNo) } else if funcNameStr == "concat" && numArgs > 2 { // expand variadic concat into nested binary concats lhs := tp.FoldLeft("concat", ords[0], ords[1:numArgs-1]) rhs := ords[numArgs-1] node = tp.MakeFunctionCall("concat", tp.ListInstructions(lhs, rhs), block, funcLineNo) } else if funcNameStr == "log" && numArgs > 1 { // expand variadic log into composition of log and concat cats := tp.FoldLeft("concat", ords[0], ords[1:]) node = tp.MakeFunctionCall("log", tp.ListInstructions(cats), block, funcLineNo) } else { node = tp.MakeFunctionCall(funcNameStr, ords, block, funcLineNo) } // if it's not a root file, we can assume that it's a user-called function if !p.CompilingMixer /* p.RootFile == false && IncludeSelectorInfo == true */ { node.IsUserCalled = proto.Bool(true) } return node }