func (n nativeObject) rebuild(o *gfx.Object, c *gfx.Camera) nativeObject { // The "Model" matrix is the Object's transformation matrix, we feed it // directly in. n.model = gfx.ConvertMat4(o.Transform.Mat4()) // The "View" matrix is the coordinate system conversion, multiplied // against the camera object's transformation matrix view := zUpRightToYUpRight if c != nil { // Apply inverse of camera object transformation. camInverse, _ := c.Object.Transform.Mat4().Inverse() view = camInverse.Mul(view) } n.view = gfx.ConvertMat4(view) // The "Projection" matrix is the camera's projection matrix. projection := math.Mat4Identity if c != nil { projection = c.Projection.Mat4() } n.projection = gfx.ConvertMat4(projection) // The "MVP" matrix is Model * View * Projection matrix. mvp := o.Transform.Mat4() mvp = mvp.Mul(view) mvp = mvp.Mul(projection) n.mvp = gfx.ConvertMat4(mvp) return n }
// gfxLoop is responsible for drawing things to the window. This loop must be // independent of the Chippy main loop. func gfxLoop(w *chippy.Window, r gfx.Renderer) { w.SetSize(640, 640) w.SetPositionCenter(chippy.DefaultScreen()) glr := r.(*gl2.Renderer) glr.UpdateBounds(image.Rect(0, 0, 640, 640)) // Create a perspective viewing frustum matrix. width, height := 640, 640 aspectRatio := float64(width) / float64(height) viewMat := gfx.ConvertMat4(math.Mat4Perspective(75.0, aspectRatio, 0.001, 1000.0)) // Create a camera. camera := &gfx.Camera{ Object: new(gfx.Object), Frustum: viewMat, } _ = camera // Create a wireframe shader. shader := &gfx.Shader{ Name: "wireframe shader", GLSLVert: wireVert, GLSLFrag: wireFrag, Inputs: make(map[string]interface{}), } // Wait for the shader to load (not strictly required). onLoad := make(chan *gfx.Shader, 1) r.LoadShader(shader, onLoad) <-onLoad if shader.Loaded { fmt.Println("Shader loaded") } else { fmt.Println(string(shader.Error)) } // Create a triangle object. triangle := &gfx.Object{ Shader: shader, State: gfx.DefaultState, Meshes: []*gfx.Mesh{ &gfx.Mesh{ Vertices: []gfx.Vec3{ // Top {0, .9, 0}, {-.9, -.9, 0}, {.9, -.9, 0}, }, Colors: []gfx.Color{ // Top {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, }, }, }, } triangle.State.FaceCulling = gfx.NoFaceCulling octree := gfx.NewOctree() update := make(chan *gfx.Object) go func() { events := w.Events() for { e := <-events kev, ok := e.(keyboard.TypedEvent) if ok { if kev.Rune == 'f' || kev.Rune == 'b' { for i := 0; i < 100; i++ { s := mySpatial{ aabb: randomAABB(0.1, 0.25), } if kev.Rune == 'b' { s = mySpatial{ aabb: randomAABB(0.1, 0.5), } } //s.aabb.Min.Z = -.1 //s.aabb.Max.Z = .1 //octree = gfx.NewOctree() octree.Add(s) //fmt.Println(s.AABB().Center(), s.AABB()) } // Create new mesh and ask the renderer to load it. newMesh := octreeMesh(octree) onLoad := make(chan *gfx.Mesh, 1) r.LoadMesh(newMesh, onLoad) <-onLoad // Take ownership of the triangle. <-update // Swap the mesh. triangle.Meshes[0] = newMesh // Give back ownership. update <- triangle } if kev.Rune == 'q' { // Take ownership of the triangle. <-update // Update rotation. v, ok := triangle.Shader.Inputs["rx"] rx := float32(0.0) if ok { rx = v.(float32) } rx += 0.1 triangle.Shader.Inputs["rx"] = rx // Give back ownership. update <- triangle } if kev.Rune == 's' || kev.Rune == 'S' { fmt.Println("Writing screenshot to file...") // Download the image from the graphics hardware and save // it to disk. complete := make(chan image.Image, 1) r.Download(image.Rect(0, 0, 0, 0), complete) img := <-complete // Wait for download to complete. // Save to png. f, err := os.Create("screenshot.png") if err != nil { log.Fatal(err) } err = png.Encode(f, img) if err != nil { log.Fatal(err) } fmt.Println("Wrote texture to screenshot.png") } } } }() triangleDrawn := make(chan *gfx.Object, 1) for { // Clear the entire area (empty rectangle means "the whole area"). r.Clear(image.Rect(0, 0, 0, 0), gfx.Color{1, 1, 1, 1}) r.ClearDepth(image.Rect(0, 0, 0, 0), 1.0) // See if someone else needs ownership of the triangle before we draw. select { case update <- triangle: // Wait for them to give ownership back. <-update default: } // Draw the triangle to the screen. r.Draw(image.Rect(0, 0, 0, 0), triangle, triangleDrawn) // Render the whole frame. r.Render() select { case <-triangleDrawn: // Allow updates to the triangle if needed. select { case update <- triangle: <-update default: } } } }