// number = int_lit [ "p" int_lit ] . // func (p *gcParser) parseNumber() Const { // mantissa sign, val := p.parseInt() mant, ok := new(big.Int).SetString(sign+val, 10) assert(ok) if p.lit == "p" { // exponent (base 2) p.next() sign, val = p.parseInt() exp, err := strconv.Atoui(val) if err != nil { p.error(err) } if sign == "-" { denom := big.NewInt(1) denom.Lsh(denom, exp) return Const{new(big.Rat).SetFrac(mant, denom)} } if exp > 0 { mant.Lsh(mant, exp) } return Const{new(big.Rat).SetInt(mant)} } return Const{mant} }
func bitwise_arithmetic_shift_left(x, y Obj) Obj { xfx := (uintptr(unsafe.Pointer(x)) & fixnum_mask) == fixnum_tag yfx := (uintptr(unsafe.Pointer(y)) & fixnum_mask) == fixnum_tag if !yfx { panic("bad shift amount") } amount := uint(uintptr(unsafe.Pointer(y)) >> fixnum_shift) if xfx && amount < 32-fixnum_shift { i := int64(int(uintptr(unsafe.Pointer(x)) >> fixnum_shift)) r := i << amount if r >= int64(fixnum_min) && r <= int64(fixnum_max) { return Obj(unsafe.Pointer(uintptr((r << fixnum_shift) | fixnum_tag))) } else { return wrap(big.NewInt(r)) } } else if xfx { x = wrap(big.NewInt(int64(fixnum_to_int(x)))) } else if (uintptr(unsafe.Pointer(x)) & heap_mask) != heap_tag { panic("bad type") } switch vx := (*x).(type) { case *big.Int: var z *big.Int = big.NewInt(0) return wrap(z.Lsh(vx, amount)) } panic("bad type") }
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and // returns its double, also in Jacobian form. func (curve *Curve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b delta := new(big.Int).Mul(z, z) delta.Mod(delta, curve.P) gamma := new(big.Int).Mul(y, y) gamma.Mod(gamma, curve.P) alpha := new(big.Int).Sub(x, delta) if alpha.Sign() == -1 { alpha.Add(alpha, curve.P) } alpha2 := new(big.Int).Add(x, delta) alpha.Mul(alpha, alpha2) alpha2.Set(alpha) alpha.Lsh(alpha, 1) alpha.Add(alpha, alpha2) beta := alpha2.Mul(x, gamma) x3 := new(big.Int).Mul(alpha, alpha) beta8 := new(big.Int).Lsh(beta, 3) x3.Sub(x3, beta8) for x3.Sign() == -1 { x3.Add(x3, curve.P) } x3.Mod(x3, curve.P) z3 := new(big.Int).Add(y, z) z3.Mul(z3, z3) z3.Sub(z3, gamma) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Sub(z3, delta) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Mod(z3, curve.P) beta.Lsh(beta, 2) beta.Sub(beta, x3) if beta.Sign() == -1 { beta.Add(beta, curve.P) } y3 := alpha.Mul(alpha, beta) gamma.Mul(gamma, gamma) gamma.Lsh(gamma, 3) gamma.Mod(gamma, curve.P) y3.Sub(y3, gamma) if y3.Sign() == -1 { y3.Add(y3, curve.P) } y3.Mod(y3, curve.P) return x3, y3, z3 }
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and // (x2, y2, z2) and returns their sum, also in Jacobian form. func (curve *Curve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl z1z1 := new(big.Int).Mul(z1, z1) z1z1.Mod(z1z1, curve.P) z2z2 := new(big.Int).Mul(z2, z2) z2z2.Mod(z2z2, curve.P) u1 := new(big.Int).Mul(x1, z2z2) u1.Mod(u1, curve.P) u2 := new(big.Int).Mul(x2, z1z1) u2.Mod(u2, curve.P) h := new(big.Int).Sub(u2, u1) if h.Sign() == -1 { h.Add(h, curve.P) } i := new(big.Int).Lsh(h, 1) i.Mul(i, i) j := new(big.Int).Mul(h, i) s1 := new(big.Int).Mul(y1, z2) s1.Mul(s1, z2z2) s1.Mod(s1, curve.P) s2 := new(big.Int).Mul(y2, z1) s2.Mul(s2, z1z1) s2.Mod(s2, curve.P) r := new(big.Int).Sub(s2, s1) if r.Sign() == -1 { r.Add(r, curve.P) } r.Lsh(r, 1) v := new(big.Int).Mul(u1, i) x3 := new(big.Int).Set(r) x3.Mul(x3, x3) x3.Sub(x3, j) x3.Sub(x3, v) x3.Sub(x3, v) x3.Mod(x3, curve.P) y3 := new(big.Int).Set(r) v.Sub(v, x3) y3.Mul(y3, v) s1.Mul(s1, j) s1.Lsh(s1, 1) y3.Sub(y3, s1) y3.Mod(y3, curve.P) z3 := new(big.Int).Add(z1, z2) z3.Mul(z3, z3) z3.Sub(z3, z1z1) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Sub(z3, z2z2) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Mul(z3, h) z3.Mod(z3, curve.P) return x3, y3, z3 }