/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { t := nl.Type a := optoas(gc.OHMUL, t) if nl.Ullman < nr.Ullman { tmp := nl nl = nr nr = tmp } var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) var ax gc.Node gc.Nodreg(&ax, t, x86.REG_AX) gmove(&n1, &ax) gins(a, &n2, nil) gc.Regfree(&n2) gc.Regfree(&n1) var dx gc.Node if t.Width == 1 { // byte multiply behaves differently. gc.Nodreg(&ax, t, x86.REG_AH) gc.Nodreg(&dx, t, x86.REG_DX) gmove(&ax, &dx) } gc.Nodreg(&dx, t, x86.REG_DX) gmove(&dx, res) }
/* * generate * as $c, reg */ func gconreg(as int, c int64, reg int) { var nr gc.Node switch as { case x86.AADDL, x86.AMOVL, x86.ALEAL: gc.Nodreg(&nr, gc.Types[gc.TINT32], reg) default: gc.Nodreg(&nr, gc.Types[gc.TINT64], reg) } ginscon(as, c, &nr) }
/* * generate * as $c, reg */ func gconreg(as int, c int64, reg int) { var n1 gc.Node var n2 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT64], c) gc.Nodreg(&n2, gc.Types[gc.TINT64], reg) gins(as, &n1, &n2) }
func ginsnop() { // This is actually not the x86 NOP anymore, // but at the point where it gets used, AX is dead // so it's okay if we lose the high bits. var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], x86.REG_AX) gins(x86.AXCHGL, ®, ®) }
/* * generate byte multiply: * res = nl * nr * there is no 2-operand byte multiply instruction so * we do a full-width multiplication and truncate afterwards. */ func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) bool { if optoas(op, nl.Type) != x86.AIMULB { return false } // largest ullman on left. if nl.Ullman < nr.Ullman { tmp := nl nl = nr nr = tmp } // generate operands in "8-bit" registers. var n1b gc.Node gc.Regalloc(&n1b, nl.Type, res) gc.Cgen(nl, &n1b) var n2b gc.Node gc.Regalloc(&n2b, nr.Type, nil) gc.Cgen(nr, &n2b) // perform full-width multiplication. t := gc.Types[gc.TUINT64] if gc.Issigned[nl.Type.Etype] { t = gc.Types[gc.TINT64] } var n1 gc.Node gc.Nodreg(&n1, t, int(n1b.Reg)) var n2 gc.Node gc.Nodreg(&n2, t, int(n2b.Reg)) a := optoas(op, t) gins(a, &n2, &n1) // truncate. gmove(&n1, res) gc.Regfree(&n1b) gc.Regfree(&n2b) return true }
// floating-point. 387 (not SSE2) func cgen_float387(n *gc.Node, res *gc.Node) { var f0 gc.Node var f1 gc.Node nl := n.Left nr := n.Right gc.Nodreg(&f0, nl.Type, x86.REG_F0) gc.Nodreg(&f1, n.Type, x86.REG_F0+1) if nr != nil { // binary if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &f0) if nr.Addable != 0 { gins(foptoas(int(n.Op), n.Type, 0), nr, &f0) } else { gc.Cgen(nr, &f0) gins(foptoas(int(n.Op), n.Type, Fpop), &f0, &f1) } } else { gc.Cgen(nr, &f0) if nl.Addable != 0 { gins(foptoas(int(n.Op), n.Type, Frev), nl, &f0) } else { gc.Cgen(nl, &f0) gins(foptoas(int(n.Op), n.Type, Frev|Fpop), &f0, &f1) } } gmove(&f0, res) return } // unary gc.Cgen(nl, &f0) if n.Op != gc.OCONV && n.Op != gc.OPLUS { gins(foptoas(int(n.Op), n.Type, 0), nil, nil) } gmove(&f0, res) return }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { var n1 gc.Node var n2 gc.Node var ax gc.Node var dx gc.Node t := nl.Type a := optoas(gc.OHMUL, t) // gen nl in n1. gc.Tempname(&n1, t) gc.Cgen(nl, &n1) // gen nr in n2. gc.Regalloc(&n2, t, res) gc.Cgen(nr, &n2) // multiply. gc.Nodreg(&ax, t, x86.REG_AX) gmove(&n2, &ax) gins(a, &n1, nil) gc.Regfree(&n2) if t.Width == 1 { // byte multiply behaves differently. gc.Nodreg(&ax, t, x86.REG_AH) gc.Nodreg(&dx, t, x86.REG_DX) gmove(&ax, &dx) } gc.Nodreg(&dx, t, x86.REG_DX) gmove(&dx, res) }
func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) { r := int(reg[dr]) gc.Nodreg(x, gc.Types[gc.TINT32], dr) // save current ax and dx if they are live // and not the destination *oldx = gc.Node{} if r > 0 && !gc.Samereg(x, res) { gc.Tempname(oldx, gc.Types[gc.TINT32]) gmove(x, oldx) } gc.Regalloc(x, t, x) }
/* * register dr is one of the special ones (AX, CX, DI, SI, etc.). * we need to use it. if it is already allocated as a temporary * (r > 1; can only happen if a routine like sgen passed a * special as cgen's res and then cgen used regalloc to reuse * it as its own temporary), then move it for now to another * register. caller must call restx to move it back. * the move is not necessary if dr == res, because res is * known to be dead. */ func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) { r := int(reg[dr]) // save current ax and dx if they are live // and not the destination *oldx = gc.Node{} gc.Nodreg(x, t, dr) if r > 1 && !gc.Samereg(x, res) { gc.Regalloc(oldx, gc.Types[gc.TINT64], nil) x.Type = gc.Types[gc.TINT64] gmove(x, oldx) x.Type = t oldx.Ostk = int32(r) // squirrel away old r value reg[dr] = 1 } }
/* * generate: * call f * proc=-1 normal call but no return * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack * proc=3 normal call to C pointer (not Go func value) */ func ginscall(f *gc.Node, proc int) { if f.Type != nil { extra := int32(0) if proc == 1 || proc == 2 { extra = 2 * int32(gc.Widthptr) } gc.Setmaxarg(f.Type, extra) } switch proc { default: gc.Fatal("ginscall: bad proc %d", proc) case 0, // normal call -1: // normal call but no return if f.Op == gc.ONAME && f.Class == gc.PFUNC { if f == gc.Deferreturn { // Deferred calls will appear to be returning to // the CALL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction byte before the return PC. // To avoid that being an unrelated instruction, // insert a ppc64 NOP that we will have the right line number. // The ppc64 NOP is really or r0, r0, r0; use that description // because the NOP pseudo-instruction would be removed by // the linker. var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], ppc64.REG_R0) gins(ppc64.AOR, ®, ®) } p := gins(ppc64.ABL, nil, f) gc.Afunclit(&p.To, f) if proc == -1 || gc.Noreturn(p) { gins(obj.AUNDEF, nil, nil) } break } var reg gc.Node gc.Nodreg(®, gc.Types[gc.Tptr], ppc64.REGCTXT) var r1 gc.Node gc.Nodreg(&r1, gc.Types[gc.Tptr], ppc64.REG_R3) gmove(f, ®) reg.Op = gc.OINDREG gmove(®, &r1) reg.Op = gc.OREGISTER ginsBL(®, &r1) case 3: // normal call of c function pointer ginsBL(nil, f) case 1, // call in new proc (go) 2: // deferred call (defer) var con gc.Node gc.Nodconst(&con, gc.Types[gc.TINT64], int64(gc.Argsize(f.Type))) var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT64], ppc64.REG_R3) var reg2 gc.Node gc.Nodreg(®2, gc.Types[gc.TINT64], ppc64.REG_R4) gmove(f, ®) gmove(&con, ®2) p := gins(ppc64.AMOVW, ®2, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = ppc64.REGSP p.To.Offset = 8 p = gins(ppc64.AMOVD, ®, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = ppc64.REGSP p.To.Offset = 16 if proc == 1 { ginscall(gc.Newproc, 0) } else { if gc.Hasdefer == 0 { gc.Fatal("hasdefer=0 but has defer") } ginscall(gc.Deferproc, 0) } if proc == 2 { gc.Nodreg(®, gc.Types[gc.TINT64], ppc64.REG_R3) p := gins(ppc64.ACMP, ®, nil) p.To.Type = obj.TYPE_REG p.To.Reg = ppc64.REGZERO p = gc.Gbranch(ppc64.ABEQ, nil, +1) cgen_ret(nil) gc.Patch(p, gc.Pc) } } }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { a := optoas(op, nl.Type) if nr.Op == gc.OLITERAL { var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gc.Cgen(nl, &n1) sc := uint64(gc.Mpgetfix(nr.Val.U.Xval)) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 var n3 gc.Node gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n1) gins(a, &n3, &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } if nl.Ullman >= gc.UINF { var n4 gc.Node gc.Tempname(&n4, nl.Type) gc.Cgen(nl, &n4) nl = &n4 } if nr.Ullman >= gc.UINF { var n5 gc.Node gc.Tempname(&n5, nr.Type) gc.Cgen(nr, &n5) nr = &n5 } rcx := int(reg[x86.REG_CX]) var n1 gc.Node gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) // Allow either uint32 or uint64 as shift type, // to avoid unnecessary conversion from uint32 to uint64 // just to do the comparison. tcount := gc.Types[gc.Simtype[nr.Type.Etype]] if tcount.Etype < gc.TUINT32 { tcount = gc.Types[gc.TUINT32] } gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX var n3 gc.Node gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT64], x86.REG_CX) var oldcx gc.Node if rcx > 0 && !gc.Samereg(&cx, res) { gc.Regalloc(&oldcx, gc.Types[gc.TUINT64], nil) gmove(&cx, &oldcx) } cx.Type = tcount var n2 gc.Node if gc.Samereg(&cx, res) { gc.Regalloc(&n2, nl.Type, nil) } else { gc.Regalloc(&n2, nl.Type, res) } if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) gmove(&n1, &n3) } else { gc.Cgen(nr, &n1) gmove(&n1, &n3) gc.Cgen(nl, &n2) } gc.Regfree(&n3) // test and fix up large shifts if !bounded { gc.Nodconst(&n3, tcount, nl.Type.Width*8) gins(optoas(gc.OCMP, tcount), &n1, &n3) p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, +1) if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n2) } else { gc.Nodconst(&n3, nl.Type, 0) gmove(&n3, &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) if oldcx.Op != 0 { cx.Type = gc.Types[gc.TUINT64] gmove(&oldcx, &cx) gc.Regfree(&oldcx) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * attempt to generate 64-bit * res = n * return 1 on success, 0 if op not handled. */ func cgen64(n *gc.Node, res *gc.Node) { if res.Op != gc.OINDREG && res.Op != gc.ONAME { gc.Dump("n", n) gc.Dump("res", res) gc.Fatal("cgen64 %v of %v", gc.Oconv(int(n.Op), 0), gc.Oconv(int(res.Op), 0)) } switch n.Op { default: gc.Fatal("cgen64 %v", gc.Oconv(int(n.Op), 0)) case gc.OMINUS: gc.Cgen(n.Left, res) var hi1 gc.Node var lo1 gc.Node split64(res, &lo1, &hi1) gins(x86.ANEGL, nil, &lo1) gins(x86.AADCL, ncon(0), &hi1) gins(x86.ANEGL, nil, &hi1) splitclean() return case gc.OCOM: gc.Cgen(n.Left, res) var lo1 gc.Node var hi1 gc.Node split64(res, &lo1, &hi1) gins(x86.ANOTL, nil, &lo1) gins(x86.ANOTL, nil, &hi1) splitclean() return // binary operators. // common setup below. case gc.OADD, gc.OSUB, gc.OMUL, gc.OLROT, gc.OLSH, gc.ORSH, gc.OAND, gc.OOR, gc.OXOR: break } l := n.Left r := n.Right if !l.Addable { var t1 gc.Node gc.Tempname(&t1, l.Type) gc.Cgen(l, &t1) l = &t1 } if r != nil && !r.Addable { var t2 gc.Node gc.Tempname(&t2, r.Type) gc.Cgen(r, &t2) r = &t2 } var ax gc.Node gc.Nodreg(&ax, gc.Types[gc.TINT32], x86.REG_AX) var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX) var dx gc.Node gc.Nodreg(&dx, gc.Types[gc.TINT32], x86.REG_DX) // Setup for binary operation. var hi1 gc.Node var lo1 gc.Node split64(l, &lo1, &hi1) var lo2 gc.Node var hi2 gc.Node if gc.Is64(r.Type) { split64(r, &lo2, &hi2) } // Do op. Leave result in DX:AX. switch n.Op { // TODO: Constants case gc.OADD: gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(x86.AADDL, &lo2, &ax) gins(x86.AADCL, &hi2, &dx) // TODO: Constants. case gc.OSUB: gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(x86.ASUBL, &lo2, &ax) gins(x86.ASBBL, &hi2, &dx) // let's call the next two EX and FX. case gc.OMUL: var ex gc.Node gc.Regalloc(&ex, gc.Types[gc.TPTR32], nil) var fx gc.Node gc.Regalloc(&fx, gc.Types[gc.TPTR32], nil) // load args into DX:AX and EX:CX. gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(x86.AMOVL, &lo2, &cx) gins(x86.AMOVL, &hi2, &ex) // if DX and EX are zero, use 32 x 32 -> 64 unsigned multiply. gins(x86.AMOVL, &dx, &fx) gins(x86.AORL, &ex, &fx) p1 := gc.Gbranch(x86.AJNE, nil, 0) gins(x86.AMULL, &cx, nil) // implicit &ax p2 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // full 64x64 -> 64, from 32x32 -> 64. gins(x86.AIMULL, &cx, &dx) gins(x86.AMOVL, &ax, &fx) gins(x86.AIMULL, &ex, &fx) gins(x86.AADDL, &dx, &fx) gins(x86.AMOVL, &cx, &dx) gins(x86.AMULL, &dx, nil) // implicit &ax gins(x86.AADDL, &fx, &dx) gc.Patch(p2, gc.Pc) gc.Regfree(&ex) gc.Regfree(&fx) // We only rotate by a constant c in [0,64). // if c >= 32: // lo, hi = hi, lo // c -= 32 // if c == 0: // no-op // else: // t = hi // shld hi:lo, c // shld lo:t, c case gc.OLROT: v := uint64(gc.Mpgetfix(r.Val.U.Xval)) if v >= 32 { // reverse during load to do the first 32 bits of rotate v -= 32 gins(x86.AMOVL, &lo1, &dx) gins(x86.AMOVL, &hi1, &ax) } else { gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) } if v == 0 { } else // done { gins(x86.AMOVL, &dx, &cx) p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx) p1.From.Index = x86.REG_AX // double-width shift p1.From.Scale = 0 p1 = gins(x86.ASHLL, ncon(uint32(v)), &ax) p1.From.Index = x86.REG_CX // double-width shift p1.From.Scale = 0 } case gc.OLSH: if r.Op == gc.OLITERAL { v := uint64(gc.Mpgetfix(r.Val.U.Xval)) if v >= 64 { if gc.Is64(r.Type) { splitclean() } splitclean() split64(res, &lo2, &hi2) gins(x86.AMOVL, ncon(0), &lo2) gins(x86.AMOVL, ncon(0), &hi2) splitclean() return } if v >= 32 { if gc.Is64(r.Type) { splitclean() } split64(res, &lo2, &hi2) gmove(&lo1, &hi2) if v > 32 { gins(x86.ASHLL, ncon(uint32(v-32)), &hi2) } gins(x86.AMOVL, ncon(0), &lo2) splitclean() splitclean() return } // general shift gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) p1 := gins(x86.ASHLL, ncon(uint32(v)), &dx) p1.From.Index = x86.REG_AX // double-width shift p1.From.Scale = 0 gins(x86.ASHLL, ncon(uint32(v)), &ax) break } // load value into DX:AX. gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) // load shift value into register. // if high bits are set, zero value. var p1 *obj.Prog if gc.Is64(r.Type) { gins(x86.ACMPL, &hi2, ncon(0)) p1 = gc.Gbranch(x86.AJNE, nil, +1) gins(x86.AMOVL, &lo2, &cx) } else { cx.Type = gc.Types[gc.TUINT32] gmove(r, &cx) } // if shift count is >=64, zero value gins(x86.ACMPL, &cx, ncon(64)) p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) if p1 != nil { gc.Patch(p1, gc.Pc) } gins(x86.AXORL, &dx, &dx) gins(x86.AXORL, &ax, &ax) gc.Patch(p2, gc.Pc) // if shift count is >= 32, zero low. gins(x86.ACMPL, &cx, ncon(32)) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) gins(x86.AMOVL, &ax, &dx) gins(x86.ASHLL, &cx, &dx) // SHLL only uses bottom 5 bits of count gins(x86.AXORL, &ax, &ax) p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // general shift p1 = gins(x86.ASHLL, &cx, &dx) p1.From.Index = x86.REG_AX // double-width shift p1.From.Scale = 0 gins(x86.ASHLL, &cx, &ax) gc.Patch(p2, gc.Pc) case gc.ORSH: if r.Op == gc.OLITERAL { v := uint64(gc.Mpgetfix(r.Val.U.Xval)) if v >= 64 { if gc.Is64(r.Type) { splitclean() } splitclean() split64(res, &lo2, &hi2) if hi1.Type.Etype == gc.TINT32 { gmove(&hi1, &lo2) gins(x86.ASARL, ncon(31), &lo2) gmove(&hi1, &hi2) gins(x86.ASARL, ncon(31), &hi2) } else { gins(x86.AMOVL, ncon(0), &lo2) gins(x86.AMOVL, ncon(0), &hi2) } splitclean() return } if v >= 32 { if gc.Is64(r.Type) { splitclean() } split64(res, &lo2, &hi2) gmove(&hi1, &lo2) if v > 32 { gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v-32)), &lo2) } if hi1.Type.Etype == gc.TINT32 { gmove(&hi1, &hi2) gins(x86.ASARL, ncon(31), &hi2) } else { gins(x86.AMOVL, ncon(0), &hi2) } splitclean() splitclean() return } // general shift gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) p1 := gins(x86.ASHRL, ncon(uint32(v)), &ax) p1.From.Index = x86.REG_DX // double-width shift p1.From.Scale = 0 gins(optoas(gc.ORSH, hi1.Type), ncon(uint32(v)), &dx) break } // load value into DX:AX. gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) // load shift value into register. // if high bits are set, zero value. var p1 *obj.Prog if gc.Is64(r.Type) { gins(x86.ACMPL, &hi2, ncon(0)) p1 = gc.Gbranch(x86.AJNE, nil, +1) gins(x86.AMOVL, &lo2, &cx) } else { cx.Type = gc.Types[gc.TUINT32] gmove(r, &cx) } // if shift count is >=64, zero or sign-extend value gins(x86.ACMPL, &cx, ncon(64)) p2 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) if p1 != nil { gc.Patch(p1, gc.Pc) } if hi1.Type.Etype == gc.TINT32 { gins(x86.ASARL, ncon(31), &dx) gins(x86.AMOVL, &dx, &ax) } else { gins(x86.AXORL, &dx, &dx) gins(x86.AXORL, &ax, &ax) } gc.Patch(p2, gc.Pc) // if shift count is >= 32, sign-extend hi. gins(x86.ACMPL, &cx, ncon(32)) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) gins(x86.AMOVL, &dx, &ax) if hi1.Type.Etype == gc.TINT32 { gins(x86.ASARL, &cx, &ax) // SARL only uses bottom 5 bits of count gins(x86.ASARL, ncon(31), &dx) } else { gins(x86.ASHRL, &cx, &ax) gins(x86.AXORL, &dx, &dx) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // general shift p1 = gins(x86.ASHRL, &cx, &ax) p1.From.Index = x86.REG_DX // double-width shift p1.From.Scale = 0 gins(optoas(gc.ORSH, hi1.Type), &cx, &dx) gc.Patch(p2, gc.Pc) // make constant the right side (it usually is anyway). case gc.OXOR, gc.OAND, gc.OOR: if lo1.Op == gc.OLITERAL { nswap(&lo1, &lo2) nswap(&hi1, &hi2) } if lo2.Op == gc.OLITERAL { // special cases for constants. lv := uint32(gc.Mpgetfix(lo2.Val.U.Xval)) hv := uint32(gc.Mpgetfix(hi2.Val.U.Xval)) splitclean() // right side split64(res, &lo2, &hi2) switch n.Op { case gc.OXOR: gmove(&lo1, &lo2) gmove(&hi1, &hi2) switch lv { case 0: break case 0xffffffff: gins(x86.ANOTL, nil, &lo2) default: gins(x86.AXORL, ncon(lv), &lo2) } switch hv { case 0: break case 0xffffffff: gins(x86.ANOTL, nil, &hi2) default: gins(x86.AXORL, ncon(hv), &hi2) } case gc.OAND: switch lv { case 0: gins(x86.AMOVL, ncon(0), &lo2) default: gmove(&lo1, &lo2) if lv != 0xffffffff { gins(x86.AANDL, ncon(lv), &lo2) } } switch hv { case 0: gins(x86.AMOVL, ncon(0), &hi2) default: gmove(&hi1, &hi2) if hv != 0xffffffff { gins(x86.AANDL, ncon(hv), &hi2) } } case gc.OOR: switch lv { case 0: gmove(&lo1, &lo2) case 0xffffffff: gins(x86.AMOVL, ncon(0xffffffff), &lo2) default: gmove(&lo1, &lo2) gins(x86.AORL, ncon(lv), &lo2) } switch hv { case 0: gmove(&hi1, &hi2) case 0xffffffff: gins(x86.AMOVL, ncon(0xffffffff), &hi2) default: gmove(&hi1, &hi2) gins(x86.AORL, ncon(hv), &hi2) } } splitclean() splitclean() return } gins(x86.AMOVL, &lo1, &ax) gins(x86.AMOVL, &hi1, &dx) gins(optoas(int(n.Op), lo1.Type), &lo2, &ax) gins(optoas(int(n.Op), lo1.Type), &hi2, &dx) } if gc.Is64(r.Type) { splitclean() } splitclean() split64(res, &lo1, &hi1) gins(x86.AMOVL, &ax, &lo1) gins(x86.AMOVL, &dx, &hi1) splitclean() }
/* * generate move: * t = f * hard part is conversions. */ func gmove(f *gc.Node, t *gc.Node) { if gc.Debug['M'] != 0 { fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, obj.FmtLong), gc.Nconv(t, obj.FmtLong)) } ft := int(gc.Simsimtype(f.Type)) tt := int(gc.Simsimtype(t.Type)) cvt := (*gc.Type)(t.Type) if gc.Iscomplex[ft] || gc.Iscomplex[tt] { gc.Complexmove(f, t) return } // cannot have two memory operands var r2 gc.Node var r1 gc.Node var a int if gc.Ismem(f) && gc.Ismem(t) { goto hard } // convert constant to desired type if f.Op == gc.OLITERAL { var con gc.Node switch tt { default: gc.Convconst(&con, t.Type, &f.Val) case gc.TINT32, gc.TINT16, gc.TINT8: var con gc.Node gc.Convconst(&con, gc.Types[gc.TINT64], &f.Val) var r1 gc.Node gc.Regalloc(&r1, con.Type, t) gins(ppc64.AMOVD, &con, &r1) gmove(&r1, t) gc.Regfree(&r1) return case gc.TUINT32, gc.TUINT16, gc.TUINT8: var con gc.Node gc.Convconst(&con, gc.Types[gc.TUINT64], &f.Val) var r1 gc.Node gc.Regalloc(&r1, con.Type, t) gins(ppc64.AMOVD, &con, &r1) gmove(&r1, t) gc.Regfree(&r1) return } f = &con ft = tt // so big switch will choose a simple mov // constants can't move directly to memory. if gc.Ismem(t) { goto hard } } // float constants come from memory. //if(isfloat[tt]) // goto hard; // 64-bit immediates are also from memory. //if(isint[tt]) // goto hard; //// 64-bit immediates are really 32-bit sign-extended //// unless moving into a register. //if(isint[tt]) { // if(mpcmpfixfix(con.val.u.xval, minintval[TINT32]) < 0) // goto hard; // if(mpcmpfixfix(con.val.u.xval, maxintval[TINT32]) > 0) // goto hard; //} // value -> value copy, only one memory operand. // figure out the instruction to use. // break out of switch for one-instruction gins. // goto rdst for "destination must be register". // goto hard for "convert to cvt type first". // otherwise handle and return. switch uint32(ft)<<16 | uint32(tt) { default: gc.Fatal("gmove %v -> %v", gc.Tconv(f.Type, obj.FmtLong), gc.Tconv(t.Type, obj.FmtLong)) /* * integer copy and truncate */ case gc.TINT8<<16 | gc.TINT8, // same size gc.TUINT8<<16 | gc.TINT8, gc.TINT16<<16 | gc.TINT8, // truncate gc.TUINT16<<16 | gc.TINT8, gc.TINT32<<16 | gc.TINT8, gc.TUINT32<<16 | gc.TINT8, gc.TINT64<<16 | gc.TINT8, gc.TUINT64<<16 | gc.TINT8: a = ppc64.AMOVB case gc.TINT8<<16 | gc.TUINT8, // same size gc.TUINT8<<16 | gc.TUINT8, gc.TINT16<<16 | gc.TUINT8, // truncate gc.TUINT16<<16 | gc.TUINT8, gc.TINT32<<16 | gc.TUINT8, gc.TUINT32<<16 | gc.TUINT8, gc.TINT64<<16 | gc.TUINT8, gc.TUINT64<<16 | gc.TUINT8: a = ppc64.AMOVBZ case gc.TINT16<<16 | gc.TINT16, // same size gc.TUINT16<<16 | gc.TINT16, gc.TINT32<<16 | gc.TINT16, // truncate gc.TUINT32<<16 | gc.TINT16, gc.TINT64<<16 | gc.TINT16, gc.TUINT64<<16 | gc.TINT16: a = ppc64.AMOVH case gc.TINT16<<16 | gc.TUINT16, // same size gc.TUINT16<<16 | gc.TUINT16, gc.TINT32<<16 | gc.TUINT16, // truncate gc.TUINT32<<16 | gc.TUINT16, gc.TINT64<<16 | gc.TUINT16, gc.TUINT64<<16 | gc.TUINT16: a = ppc64.AMOVHZ case gc.TINT32<<16 | gc.TINT32, // same size gc.TUINT32<<16 | gc.TINT32, gc.TINT64<<16 | gc.TINT32, // truncate gc.TUINT64<<16 | gc.TINT32: a = ppc64.AMOVW case gc.TINT32<<16 | gc.TUINT32, // same size gc.TUINT32<<16 | gc.TUINT32, gc.TINT64<<16 | gc.TUINT32, gc.TUINT64<<16 | gc.TUINT32: a = ppc64.AMOVWZ case gc.TINT64<<16 | gc.TINT64, // same size gc.TINT64<<16 | gc.TUINT64, gc.TUINT64<<16 | gc.TINT64, gc.TUINT64<<16 | gc.TUINT64: a = ppc64.AMOVD /* * integer up-conversions */ case gc.TINT8<<16 | gc.TINT16, // sign extend int8 gc.TINT8<<16 | gc.TUINT16, gc.TINT8<<16 | gc.TINT32, gc.TINT8<<16 | gc.TUINT32, gc.TINT8<<16 | gc.TINT64, gc.TINT8<<16 | gc.TUINT64: a = ppc64.AMOVB goto rdst case gc.TUINT8<<16 | gc.TINT16, // zero extend uint8 gc.TUINT8<<16 | gc.TUINT16, gc.TUINT8<<16 | gc.TINT32, gc.TUINT8<<16 | gc.TUINT32, gc.TUINT8<<16 | gc.TINT64, gc.TUINT8<<16 | gc.TUINT64: a = ppc64.AMOVBZ goto rdst case gc.TINT16<<16 | gc.TINT32, // sign extend int16 gc.TINT16<<16 | gc.TUINT32, gc.TINT16<<16 | gc.TINT64, gc.TINT16<<16 | gc.TUINT64: a = ppc64.AMOVH goto rdst case gc.TUINT16<<16 | gc.TINT32, // zero extend uint16 gc.TUINT16<<16 | gc.TUINT32, gc.TUINT16<<16 | gc.TINT64, gc.TUINT16<<16 | gc.TUINT64: a = ppc64.AMOVHZ goto rdst case gc.TINT32<<16 | gc.TINT64, // sign extend int32 gc.TINT32<<16 | gc.TUINT64: a = ppc64.AMOVW goto rdst case gc.TUINT32<<16 | gc.TINT64, // zero extend uint32 gc.TUINT32<<16 | gc.TUINT64: a = ppc64.AMOVWZ goto rdst //warn("gmove: convert float to int not implemented: %N -> %N\n", f, t); //return; // algorithm is: // if small enough, use native float64 -> int64 conversion. // otherwise, subtract 2^63, convert, and add it back. /* * float to integer */ case gc.TFLOAT32<<16 | gc.TINT32, gc.TFLOAT64<<16 | gc.TINT32, gc.TFLOAT32<<16 | gc.TINT64, gc.TFLOAT64<<16 | gc.TINT64, gc.TFLOAT32<<16 | gc.TINT16, gc.TFLOAT32<<16 | gc.TINT8, gc.TFLOAT32<<16 | gc.TUINT16, gc.TFLOAT32<<16 | gc.TUINT8, gc.TFLOAT64<<16 | gc.TINT16, gc.TFLOAT64<<16 | gc.TINT8, gc.TFLOAT64<<16 | gc.TUINT16, gc.TFLOAT64<<16 | gc.TUINT8, gc.TFLOAT32<<16 | gc.TUINT32, gc.TFLOAT64<<16 | gc.TUINT32, gc.TFLOAT32<<16 | gc.TUINT64, gc.TFLOAT64<<16 | gc.TUINT64: bignodes() var r1 gc.Node gc.Regalloc(&r1, gc.Types[ft], f) gmove(f, &r1) if tt == gc.TUINT64 { gc.Regalloc(&r2, gc.Types[gc.TFLOAT64], nil) gmove(&bigf, &r2) gins(ppc64.AFCMPU, &r1, &r2) p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TFLOAT64]), nil, +1)) gins(ppc64.AFSUB, &r2, &r1) gc.Patch(p1, gc.Pc) gc.Regfree(&r2) } gc.Regalloc(&r2, gc.Types[gc.TFLOAT64], nil) var r3 gc.Node gc.Regalloc(&r3, gc.Types[gc.TINT64], t) gins(ppc64.AFCTIDZ, &r1, &r2) p1 := (*obj.Prog)(gins(ppc64.AFMOVD, &r2, nil)) p1.To.Type = obj.TYPE_MEM p1.To.Reg = ppc64.REGSP p1.To.Offset = -8 p1 = gins(ppc64.AMOVD, nil, &r3) p1.From.Type = obj.TYPE_MEM p1.From.Reg = ppc64.REGSP p1.From.Offset = -8 gc.Regfree(&r2) gc.Regfree(&r1) if tt == gc.TUINT64 { p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TFLOAT64]), nil, +1)) // use CR0 here again gc.Nodreg(&r1, gc.Types[gc.TINT64], ppc64.REGTMP) gins(ppc64.AMOVD, &bigi, &r1) gins(ppc64.AADD, &r1, &r3) gc.Patch(p1, gc.Pc) } gmove(&r3, t) gc.Regfree(&r3) return //warn("gmove: convert int to float not implemented: %N -> %N\n", f, t); //return; // algorithm is: // if small enough, use native int64 -> uint64 conversion. // otherwise, halve (rounding to odd?), convert, and double. /* * integer to float */ case gc.TINT32<<16 | gc.TFLOAT32, gc.TINT32<<16 | gc.TFLOAT64, gc.TINT64<<16 | gc.TFLOAT32, gc.TINT64<<16 | gc.TFLOAT64, gc.TINT16<<16 | gc.TFLOAT32, gc.TINT16<<16 | gc.TFLOAT64, gc.TINT8<<16 | gc.TFLOAT32, gc.TINT8<<16 | gc.TFLOAT64, gc.TUINT16<<16 | gc.TFLOAT32, gc.TUINT16<<16 | gc.TFLOAT64, gc.TUINT8<<16 | gc.TFLOAT32, gc.TUINT8<<16 | gc.TFLOAT64, gc.TUINT32<<16 | gc.TFLOAT32, gc.TUINT32<<16 | gc.TFLOAT64, gc.TUINT64<<16 | gc.TFLOAT32, gc.TUINT64<<16 | gc.TFLOAT64: bignodes() var r1 gc.Node gc.Regalloc(&r1, gc.Types[gc.TINT64], nil) gmove(f, &r1) if ft == gc.TUINT64 { gc.Nodreg(&r2, gc.Types[gc.TUINT64], ppc64.REGTMP) gmove(&bigi, &r2) gins(ppc64.ACMPU, &r1, &r2) p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT64]), nil, +1)) p2 := (*obj.Prog)(gins(ppc64.ASRD, nil, &r1)) p2.From.Type = obj.TYPE_CONST p2.From.Offset = 1 gc.Patch(p1, gc.Pc) } gc.Regalloc(&r2, gc.Types[gc.TFLOAT64], t) p1 := (*obj.Prog)(gins(ppc64.AMOVD, &r1, nil)) p1.To.Type = obj.TYPE_MEM p1.To.Reg = ppc64.REGSP p1.To.Offset = -8 p1 = gins(ppc64.AFMOVD, nil, &r2) p1.From.Type = obj.TYPE_MEM p1.From.Reg = ppc64.REGSP p1.From.Offset = -8 gins(ppc64.AFCFID, &r2, &r2) gc.Regfree(&r1) if ft == gc.TUINT64 { p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT64]), nil, +1)) // use CR0 here again gc.Nodreg(&r1, gc.Types[gc.TFLOAT64], ppc64.FREGTWO) gins(ppc64.AFMUL, &r1, &r2) gc.Patch(p1, gc.Pc) } gmove(&r2, t) gc.Regfree(&r2) return /* * float to float */ case gc.TFLOAT32<<16 | gc.TFLOAT32: a = ppc64.AFMOVS case gc.TFLOAT64<<16 | gc.TFLOAT64: a = ppc64.AFMOVD case gc.TFLOAT32<<16 | gc.TFLOAT64: a = ppc64.AFMOVS goto rdst case gc.TFLOAT64<<16 | gc.TFLOAT32: a = ppc64.AFRSP goto rdst } gins(a, f, t) return // requires register destination rdst: { gc.Regalloc(&r1, t.Type, t) gins(a, f, &r1) gmove(&r1, t) gc.Regfree(&r1) return } // requires register intermediate hard: gc.Regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) gc.Regfree(&r1) return }
func stackcopy(n, res *gc.Node, osrc, odst, w int64) { var dst gc.Node gc.Nodreg(&dst, gc.Types[gc.Tptr], x86.REG_DI) var src gc.Node gc.Nodreg(&src, gc.Types[gc.Tptr], x86.REG_SI) var tsrc gc.Node gc.Tempname(&tsrc, gc.Types[gc.Tptr]) var tdst gc.Node gc.Tempname(&tdst, gc.Types[gc.Tptr]) if n.Addable == 0 { gc.Agen(n, &tsrc) } if res.Addable == 0 { gc.Agen(res, &tdst) } if n.Addable != 0 { gc.Agen(n, &src) } else { gmove(&tsrc, &src) } if res.Op == gc.ONAME { gc.Gvardef(res) } if res.Addable != 0 { gc.Agen(res, &dst) } else { gmove(&tdst, &dst) } c := int32(w % 4) // bytes q := int32(w / 4) // doublewords // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && int64(odst) < int64(osrc)+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(x86.AADDL, w-1, x86.REG_SI) gconreg(x86.AADDL, w-1, x86.REG_DI) gconreg(x86.AMOVL, int64(c), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(x86.AADDL, -3, x86.REG_SI) gconreg(x86.AADDL, -3, x86.REG_DI) } else { gconreg(x86.AADDL, w-4, x86.REG_SI) gconreg(x86.AADDL, w-4, x86.REG_DI) } gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { gins(x86.ACLD, nil, nil) // paranoia. TODO(rsc): remove? // normal direction if q > 128 || (q >= 4 && gc.Nacl) { gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 10 and 128 = magic constants: see ../../runtime/asm_386.s p.To.Offset = 10 * (128 - int64(q)) } else if !gc.Nacl && c == 0 { var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX) // We don't need the MOVSL side-effect of updating SI and DI, // and issuing a sequence of MOVLs directly is faster. src.Op = gc.OINDREG dst.Op = gc.OINDREG for q > 0 { gmove(&src, &cx) // MOVL x+(SI),CX gmove(&cx, &dst) // MOVL CX,x+(DI) src.Xoffset += 4 dst.Xoffset += 4 q-- } } else { for q > 0 { gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ q-- } } for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } }
func gmove(f *gc.Node, t *gc.Node) { if gc.Debug['M'] != 0 { fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, 0), gc.Nconv(t, 0)) } ft := gc.Simsimtype(f.Type) tt := gc.Simsimtype(t.Type) cvt := t.Type if gc.Iscomplex[ft] || gc.Iscomplex[tt] { gc.Complexmove(f, t) return } if gc.Isfloat[ft] || gc.Isfloat[tt] { floatmove(f, t) return } // cannot have two integer memory operands; // except 64-bit, which always copies via registers anyway. var r1 gc.Node var a int if gc.Isint[ft] && gc.Isint[tt] && !gc.Is64(f.Type) && !gc.Is64(t.Type) && gc.Ismem(f) && gc.Ismem(t) { goto hard } // convert constant to desired type if f.Op == gc.OLITERAL { var con gc.Node gc.Convconst(&con, t.Type, &f.Val) f = &con ft = gc.Simsimtype(con.Type) } // value -> value copy, only one memory operand. // figure out the instruction to use. // break out of switch for one-instruction gins. // goto rdst for "destination must be register". // goto hard for "convert to cvt type first". // otherwise handle and return. switch uint32(ft)<<16 | uint32(tt) { default: // should not happen gc.Fatal("gmove %v -> %v", gc.Nconv(f, 0), gc.Nconv(t, 0)) return /* * integer copy and truncate */ case gc.TINT8<<16 | gc.TINT8, // same size gc.TINT8<<16 | gc.TUINT8, gc.TUINT8<<16 | gc.TINT8, gc.TUINT8<<16 | gc.TUINT8: a = x86.AMOVB case gc.TINT16<<16 | gc.TINT8, // truncate gc.TUINT16<<16 | gc.TINT8, gc.TINT32<<16 | gc.TINT8, gc.TUINT32<<16 | gc.TINT8, gc.TINT16<<16 | gc.TUINT8, gc.TUINT16<<16 | gc.TUINT8, gc.TINT32<<16 | gc.TUINT8, gc.TUINT32<<16 | gc.TUINT8: a = x86.AMOVB goto rsrc case gc.TINT64<<16 | gc.TINT8, // truncate low word gc.TUINT64<<16 | gc.TINT8, gc.TINT64<<16 | gc.TUINT8, gc.TUINT64<<16 | gc.TUINT8: var flo gc.Node var fhi gc.Node split64(f, &flo, &fhi) var r1 gc.Node gc.Nodreg(&r1, t.Type, x86.REG_AX) gmove(&flo, &r1) gins(x86.AMOVB, &r1, t) splitclean() return case gc.TINT16<<16 | gc.TINT16, // same size gc.TINT16<<16 | gc.TUINT16, gc.TUINT16<<16 | gc.TINT16, gc.TUINT16<<16 | gc.TUINT16: a = x86.AMOVW case gc.TINT32<<16 | gc.TINT16, // truncate gc.TUINT32<<16 | gc.TINT16, gc.TINT32<<16 | gc.TUINT16, gc.TUINT32<<16 | gc.TUINT16: a = x86.AMOVW goto rsrc case gc.TINT64<<16 | gc.TINT16, // truncate low word gc.TUINT64<<16 | gc.TINT16, gc.TINT64<<16 | gc.TUINT16, gc.TUINT64<<16 | gc.TUINT16: var flo gc.Node var fhi gc.Node split64(f, &flo, &fhi) var r1 gc.Node gc.Nodreg(&r1, t.Type, x86.REG_AX) gmove(&flo, &r1) gins(x86.AMOVW, &r1, t) splitclean() return case gc.TINT32<<16 | gc.TINT32, // same size gc.TINT32<<16 | gc.TUINT32, gc.TUINT32<<16 | gc.TINT32, gc.TUINT32<<16 | gc.TUINT32: a = x86.AMOVL case gc.TINT64<<16 | gc.TINT32, // truncate gc.TUINT64<<16 | gc.TINT32, gc.TINT64<<16 | gc.TUINT32, gc.TUINT64<<16 | gc.TUINT32: var fhi gc.Node var flo gc.Node split64(f, &flo, &fhi) var r1 gc.Node gc.Nodreg(&r1, t.Type, x86.REG_AX) gmove(&flo, &r1) gins(x86.AMOVL, &r1, t) splitclean() return case gc.TINT64<<16 | gc.TINT64, // same size gc.TINT64<<16 | gc.TUINT64, gc.TUINT64<<16 | gc.TINT64, gc.TUINT64<<16 | gc.TUINT64: var fhi gc.Node var flo gc.Node split64(f, &flo, &fhi) var tlo gc.Node var thi gc.Node split64(t, &tlo, &thi) if f.Op == gc.OLITERAL { gins(x86.AMOVL, &flo, &tlo) gins(x86.AMOVL, &fhi, &thi) } else { var r1 gc.Node gc.Nodreg(&r1, gc.Types[gc.TUINT32], x86.REG_AX) var r2 gc.Node gc.Nodreg(&r2, gc.Types[gc.TUINT32], x86.REG_DX) gins(x86.AMOVL, &flo, &r1) gins(x86.AMOVL, &fhi, &r2) gins(x86.AMOVL, &r1, &tlo) gins(x86.AMOVL, &r2, &thi) } splitclean() splitclean() return /* * integer up-conversions */ case gc.TINT8<<16 | gc.TINT16, // sign extend int8 gc.TINT8<<16 | gc.TUINT16: a = x86.AMOVBWSX goto rdst case gc.TINT8<<16 | gc.TINT32, gc.TINT8<<16 | gc.TUINT32: a = x86.AMOVBLSX goto rdst case gc.TINT8<<16 | gc.TINT64, // convert via int32 gc.TINT8<<16 | gc.TUINT64: cvt = gc.Types[gc.TINT32] goto hard case gc.TUINT8<<16 | gc.TINT16, // zero extend uint8 gc.TUINT8<<16 | gc.TUINT16: a = x86.AMOVBWZX goto rdst case gc.TUINT8<<16 | gc.TINT32, gc.TUINT8<<16 | gc.TUINT32: a = x86.AMOVBLZX goto rdst case gc.TUINT8<<16 | gc.TINT64, // convert via uint32 gc.TUINT8<<16 | gc.TUINT64: cvt = gc.Types[gc.TUINT32] goto hard case gc.TINT16<<16 | gc.TINT32, // sign extend int16 gc.TINT16<<16 | gc.TUINT32: a = x86.AMOVWLSX goto rdst case gc.TINT16<<16 | gc.TINT64, // convert via int32 gc.TINT16<<16 | gc.TUINT64: cvt = gc.Types[gc.TINT32] goto hard case gc.TUINT16<<16 | gc.TINT32, // zero extend uint16 gc.TUINT16<<16 | gc.TUINT32: a = x86.AMOVWLZX goto rdst case gc.TUINT16<<16 | gc.TINT64, // convert via uint32 gc.TUINT16<<16 | gc.TUINT64: cvt = gc.Types[gc.TUINT32] goto hard case gc.TINT32<<16 | gc.TINT64, // sign extend int32 gc.TINT32<<16 | gc.TUINT64: var thi gc.Node var tlo gc.Node split64(t, &tlo, &thi) var flo gc.Node gc.Nodreg(&flo, tlo.Type, x86.REG_AX) var fhi gc.Node gc.Nodreg(&fhi, thi.Type, x86.REG_DX) gmove(f, &flo) gins(x86.ACDQ, nil, nil) gins(x86.AMOVL, &flo, &tlo) gins(x86.AMOVL, &fhi, &thi) splitclean() return case gc.TUINT32<<16 | gc.TINT64, // zero extend uint32 gc.TUINT32<<16 | gc.TUINT64: var tlo gc.Node var thi gc.Node split64(t, &tlo, &thi) gmove(f, &tlo) gins(x86.AMOVL, ncon(0), &thi) splitclean() return } gins(a, f, t) return // requires register source rsrc: gc.Regalloc(&r1, f.Type, t) gmove(f, &r1) gins(a, &r1, t) gc.Regfree(&r1) return // requires register destination rdst: { gc.Regalloc(&r1, t.Type, t) gins(a, f, &r1) gmove(&r1, t) gc.Regfree(&r1) return } // requires register intermediate hard: gc.Regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) gc.Regfree(&r1) return }
/* * generate: * call f * proc=-1 normal call but no return * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack * proc=3 normal call to C pointer (not Go func value) */ func ginscall(f *gc.Node, proc int) { if f.Type != nil { extra := int32(0) if proc == 1 || proc == 2 { extra = 2 * int32(gc.Widthptr) } gc.Setmaxarg(f.Type, extra) } switch proc { default: gc.Fatal("ginscall: bad proc %d", proc) case 0, // normal call -1: // normal call but no return if f.Op == gc.ONAME && f.Class == gc.PFUNC { if f == gc.Deferreturn { // Deferred calls will appear to be returning to // the BL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction before that return PC. // To avoid that instruction being an unrelated instruction, // insert a NOP so that we will have the right line number. // ARM NOP 0x00000000 is really AND.EQ R0, R0, R0. // Use the latter form because the NOP pseudo-instruction // would be removed by the linker. var r gc.Node gc.Nodreg(&r, gc.Types[gc.TINT], arm.REG_R0) p := gins(arm.AAND, &r, &r) p.Scond = arm.C_SCOND_EQ } p := gins(arm.ABL, nil, f) gc.Afunclit(&p.To, f) if proc == -1 || gc.Noreturn(p) { gins(obj.AUNDEF, nil, nil) } break } var r gc.Node gc.Nodreg(&r, gc.Types[gc.Tptr], arm.REG_R7) var r1 gc.Node gc.Nodreg(&r1, gc.Types[gc.Tptr], arm.REG_R1) gmove(f, &r) r.Op = gc.OINDREG gmove(&r, &r1) r.Op = gc.OREGISTER r1.Op = gc.OINDREG gins(arm.ABL, &r, &r1) case 3: // normal call of c function pointer gins(arm.ABL, nil, f) case 1, // call in new proc (go) 2: // deferred call (defer) var r gc.Node regalloc(&r, gc.Types[gc.Tptr], nil) var con gc.Node gc.Nodconst(&con, gc.Types[gc.TINT32], int64(gc.Argsize(f.Type))) gins(arm.AMOVW, &con, &r) p := gins(arm.AMOVW, &r, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = arm.REGSP p.To.Offset = 4 gins(arm.AMOVW, f, &r) p = gins(arm.AMOVW, &r, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = arm.REGSP p.To.Offset = 8 regfree(&r) if proc == 1 { ginscall(gc.Newproc, 0) } else { ginscall(gc.Deferproc, 0) } if proc == 2 { gc.Nodconst(&con, gc.Types[gc.TINT32], 0) p := gins(arm.ACMP, &con, nil) p.Reg = arm.REG_R0 p = gc.Gbranch(arm.ABEQ, nil, +1) cgen_ret(nil) gc.Patch(p, gc.Pc) } } }
func ginsnop() { var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], x86.REG_AX) gins(x86.AXCHGL, ®, ®) }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { if nl.Type.Width > 4 { gc.Fatal("cgen_shift %v", gc.Tconv(nl.Type, 0)) } w := int(nl.Type.Width * 8) a := optoas(op, nl.Type) if nr.Op == gc.OLITERAL { var n2 gc.Node gc.Tempname(&n2, nl.Type) gc.Cgen(nl, &n2) var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gmove(&n2, &n1) sc := uint64(gc.Mpgetfix(nr.Val.U.Xval)) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 gins(a, ncon(uint32(w)-1), &n1) gins(a, ncon(uint32(w)-1), &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } var oldcx gc.Node var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX) if reg[x86.REG_CX] > 1 && !gc.Samereg(&cx, res) { gc.Tempname(&oldcx, gc.Types[gc.TUINT32]) gmove(&cx, &oldcx) } var n1 gc.Node var nt gc.Node if nr.Type.Width > 4 { gc.Tempname(&nt, nr.Type) n1 = nt } else { gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX } var n2 gc.Node if gc.Samereg(&cx, res) { gc.Regalloc(&n2, nl.Type, nil) } else { gc.Regalloc(&n2, nl.Type, res) } if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) } else { gc.Cgen(nr, &n1) gc.Cgen(nl, &n2) } // test and fix up large shifts if bounded { if nr.Type.Width > 4 { // delayed reg alloc gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX var lo gc.Node var hi gc.Node split64(&nt, &lo, &hi) gmove(&lo, &n1) splitclean() } } else { var p1 *obj.Prog if nr.Type.Width > 4 { // delayed reg alloc gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX var lo gc.Node var hi gc.Node split64(&nt, &lo, &hi) gmove(&lo, &n1) gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &hi, ncon(0)) p2 := gc.Gbranch(optoas(gc.ONE, gc.Types[gc.TUINT32]), nil, +1) gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n1, ncon(uint32(w))) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) splitclean() gc.Patch(p2, gc.Pc) } else { gins(optoas(gc.OCMP, nr.Type), &n1, ncon(uint32(w))) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) } if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gins(a, ncon(uint32(w)-1), &n2) } else { gmove(ncon(0), &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) if oldcx.Op != 0 { gmove(&oldcx, &cx) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
// res = runtime.getg() func getg(res *gc.Node) { var n1 gc.Node gc.Nodreg(&n1, res.Type, arm.REGG) gmove(&n1, res) }
func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { fmt.Printf("clearfat %v (%v, size: %d)\n", gc.Nconv(nl, 0), gc.Tconv(nl.Type, 0), nl.Type.Width) } w := uint64(uint64(nl.Type.Width)) // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := uint64(w % 8) // bytes q := uint64(w / 8) // dwords if gc.Reginuse(ppc64.REGRT1) { gc.Fatal("%v in use during clearfat", obj.Rconv(ppc64.REGRT1)) } var r0 gc.Node gc.Nodreg(&r0, gc.Types[gc.TUINT64], ppc64.REGZERO) var dst gc.Node gc.Nodreg(&dst, gc.Types[gc.Tptr], ppc64.REGRT1) gc.Regrealloc(&dst) gc.Agen(nl, &dst) var boff uint64 if q > 128 { p := gins(ppc64.ASUB, nil, &dst) p.From.Type = obj.TYPE_CONST p.From.Offset = 8 var end gc.Node gc.Regalloc(&end, gc.Types[gc.Tptr], nil) p = gins(ppc64.AMOVD, &dst, &end) p.From.Type = obj.TYPE_ADDR p.From.Offset = int64(q * 8) p = gins(ppc64.AMOVDU, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 8 pl := (*obj.Prog)(p) p = gins(ppc64.ACMP, &dst, &end) gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), pl) gc.Regfree(&end) // The loop leaves R3 on the last zeroed dword boff = 8 } else if q >= 4 { p := gins(ppc64.ASUB, nil, &dst) p.From.Type = obj.TYPE_CONST p.From.Offset = 8 f := (*gc.Node)(gc.Sysfunc("duffzero")) p = gins(obj.ADUFFZERO, nil, f) gc.Afunclit(&p.To, f) // 4 and 128 = magic constants: see ../../runtime/asm_ppc64x.s p.To.Offset = int64(4 * (128 - q)) // duffzero leaves R3 on the last zeroed dword boff = 8 } else { var p *obj.Prog for t := uint64(0); t < q; t++ { p = gins(ppc64.AMOVD, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(8 * t) } boff = 8 * q } var p *obj.Prog for t := uint64(0); t < c; t++ { p = gins(ppc64.AMOVB, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(t + boff) } gc.Regfree(&dst) }
func ginsnop() { var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], ppc64.REG_R0) gins(ppc64.AOR, ®, ®) }
func anyregalloc() bool { var j int for i := int(0); i < len(reg); i++ { if reg[i] == 0 { goto ok } for j = 0; j < len(resvd); j++ { if resvd[j] == i { goto ok } } return true ok: } return false } /* * allocate register of type t, leave in n. * if o != N, o is desired fixed register. * caller must regfree(n). */ func regalloc(n *gc.Node, t *gc.Type, o *gc.Node) { if t == nil { gc.Fatal("regalloc: t nil") } et := int(int(gc.Simtype[t.Etype])) if gc.Debug['r'] != 0 { fixfree := int(0) fltfree := int(0) for i := int(arm64.REG_R0); i < arm64.REG_F31; i++ { if reg[i-arm64.REG_R0] == 0 { if i < arm64.REG_F0 { fixfree++ } else { fltfree++ } } } fmt.Printf("regalloc fix %d flt %d free\n", fixfree, fltfree) } var i int switch et { case gc.TINT8, gc.TUINT8, gc.TINT16, gc.TUINT16, gc.TINT32, gc.TUINT32, gc.TINT64, gc.TUINT64, gc.TPTR32, gc.TPTR64, gc.TBOOL: if o != nil && o.Op == gc.OREGISTER { i = int(o.Val.U.Reg) if i >= arm64.REGMIN && i <= arm64.REGMAX { goto out } } for i = arm64.REGMIN; i <= arm64.REGMAX; i++ { if reg[i-arm64.REG_R0] == 0 { regpc[i-arm64.REG_R0] = uint32(obj.Getcallerpc(&n)) goto out } } gc.Flusherrors() for i := int(arm64.REG_R0); i < arm64.REG_R0+arm64.NREG; i++ { fmt.Printf("R%d %p\n", i, regpc[i-arm64.REG_R0]) } gc.Fatal("out of fixed registers") case gc.TFLOAT32, gc.TFLOAT64: if o != nil && o.Op == gc.OREGISTER { i = int(o.Val.U.Reg) if i >= arm64.FREGMIN && i <= arm64.FREGMAX { goto out } } for i = arm64.FREGMIN; i <= arm64.FREGMAX; i++ { if reg[i-arm64.REG_R0] == 0 { regpc[i-arm64.REG_R0] = uint32(obj.Getcallerpc(&n)) goto out } } gc.Flusherrors() for i := int(arm64.REG_F0); i < arm64.REG_F0+arm64.NREG; i++ { fmt.Printf("F%d %p\n", i, regpc[i-arm64.REG_R0]) } gc.Fatal("out of floating registers") case gc.TCOMPLEX64, gc.TCOMPLEX128: gc.Tempname(n, t) return } gc.Fatal("regalloc: unknown type %v", gc.Tconv(t, 0)) return out: reg[i-arm64.REG_R0]++ gc.Nodreg(n, t, i) } func regfree(n *gc.Node) { if n.Op == gc.ONAME { return } if n.Op != gc.OREGISTER && n.Op != gc.OINDREG { gc.Fatal("regfree: not a register") } i := int(int(n.Val.U.Reg) - arm64.REG_R0) if i == arm64.REGSP-arm64.REG_R0 { return } if i < 0 || i >= len(reg) { gc.Fatal("regfree: reg out of range") } if reg[i] <= 0 { gc.Fatal("regfree: reg not allocated") } reg[i]-- if reg[i] == 0 { regpc[i] = 0 } } /* * generate * as $c, n */ func ginscon(as int, c int64, n2 *gc.Node) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT64], c) if as != arm64.AMOVD && (c < -arm64.BIG || c > arm64.BIG) { // cannot have more than 16-bit of immediate in ADD, etc. // instead, MOV into register first. var ntmp gc.Node regalloc(&ntmp, gc.Types[gc.TINT64], nil) gins(arm64.AMOVD, &n1, &ntmp) gins(as, &ntmp, n2) regfree(&ntmp) return } gins(as, &n1, n2) } /* * generate * as n, $c (CMP) */ func ginscon2(as int, n2 *gc.Node, c int64) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT64], c) switch as { default: gc.Fatal("ginscon2") case arm64.ACMP: if -arm64.BIG <= c && c <= arm64.BIG { gcmp(as, n2, &n1) return } } // MOV n1 into register first var ntmp gc.Node regalloc(&ntmp, gc.Types[gc.TINT64], nil) gins(arm64.AMOVD, &n1, &ntmp) gcmp(as, n2, &ntmp) regfree(&ntmp) } /* * generate move: * t = f * hard part is conversions. */ func gmove(f *gc.Node, t *gc.Node) { if gc.Debug['M'] != 0 { fmt.Printf("gmove %v -> %v\n", gc.Nconv(f, obj.FmtLong), gc.Nconv(t, obj.FmtLong)) } ft := int(gc.Simsimtype(f.Type)) tt := int(gc.Simsimtype(t.Type)) cvt := (*gc.Type)(t.Type) if gc.Iscomplex[ft] || gc.Iscomplex[tt] { gc.Complexmove(f, t) return } // cannot have two memory operands var r1 gc.Node var a int if gc.Ismem(f) && gc.Ismem(t) { goto hard } // convert constant to desired type if f.Op == gc.OLITERAL { var con gc.Node switch tt { default: gc.Convconst(&con, t.Type, &f.Val) case gc.TINT32, gc.TINT16, gc.TINT8: var con gc.Node gc.Convconst(&con, gc.Types[gc.TINT64], &f.Val) var r1 gc.Node regalloc(&r1, con.Type, t) gins(arm64.AMOVD, &con, &r1) gmove(&r1, t) regfree(&r1) return case gc.TUINT32, gc.TUINT16, gc.TUINT8: var con gc.Node gc.Convconst(&con, gc.Types[gc.TUINT64], &f.Val) var r1 gc.Node regalloc(&r1, con.Type, t) gins(arm64.AMOVD, &con, &r1) gmove(&r1, t) regfree(&r1) return } f = &con ft = tt // so big switch will choose a simple mov // constants can't move directly to memory. if gc.Ismem(t) { goto hard } } // value -> value copy, first operand in memory. // any floating point operand requires register // src, so goto hard to copy to register first. if gc.Ismem(f) && ft != tt && (gc.Isfloat[ft] || gc.Isfloat[tt]) { cvt = gc.Types[ft] goto hard } // value -> value copy, only one memory operand. // figure out the instruction to use. // break out of switch for one-instruction gins. // goto rdst for "destination must be register". // goto hard for "convert to cvt type first". // otherwise handle and return. switch uint32(ft)<<16 | uint32(tt) { default: gc.Fatal("gmove %v -> %v", gc.Tconv(f.Type, obj.FmtLong), gc.Tconv(t.Type, obj.FmtLong)) /* * integer copy and truncate */ case gc.TINT8<<16 | gc.TINT8, // same size gc.TUINT8<<16 | gc.TINT8, gc.TINT16<<16 | gc.TINT8, // truncate gc.TUINT16<<16 | gc.TINT8, gc.TINT32<<16 | gc.TINT8, gc.TUINT32<<16 | gc.TINT8, gc.TINT64<<16 | gc.TINT8, gc.TUINT64<<16 | gc.TINT8: a = arm64.AMOVB case gc.TINT8<<16 | gc.TUINT8, // same size gc.TUINT8<<16 | gc.TUINT8, gc.TINT16<<16 | gc.TUINT8, // truncate gc.TUINT16<<16 | gc.TUINT8, gc.TINT32<<16 | gc.TUINT8, gc.TUINT32<<16 | gc.TUINT8, gc.TINT64<<16 | gc.TUINT8, gc.TUINT64<<16 | gc.TUINT8: a = arm64.AMOVBU case gc.TINT16<<16 | gc.TINT16, // same size gc.TUINT16<<16 | gc.TINT16, gc.TINT32<<16 | gc.TINT16, // truncate gc.TUINT32<<16 | gc.TINT16, gc.TINT64<<16 | gc.TINT16, gc.TUINT64<<16 | gc.TINT16: a = arm64.AMOVH case gc.TINT16<<16 | gc.TUINT16, // same size gc.TUINT16<<16 | gc.TUINT16, gc.TINT32<<16 | gc.TUINT16, // truncate gc.TUINT32<<16 | gc.TUINT16, gc.TINT64<<16 | gc.TUINT16, gc.TUINT64<<16 | gc.TUINT16: a = arm64.AMOVHU case gc.TINT32<<16 | gc.TINT32, // same size gc.TUINT32<<16 | gc.TINT32, gc.TINT64<<16 | gc.TINT32, // truncate gc.TUINT64<<16 | gc.TINT32: a = arm64.AMOVW case gc.TINT32<<16 | gc.TUINT32, // same size gc.TUINT32<<16 | gc.TUINT32, gc.TINT64<<16 | gc.TUINT32, gc.TUINT64<<16 | gc.TUINT32: a = arm64.AMOVWU case gc.TINT64<<16 | gc.TINT64, // same size gc.TINT64<<16 | gc.TUINT64, gc.TUINT64<<16 | gc.TINT64, gc.TUINT64<<16 | gc.TUINT64: a = arm64.AMOVD /* * integer up-conversions */ case gc.TINT8<<16 | gc.TINT16, // sign extend int8 gc.TINT8<<16 | gc.TUINT16, gc.TINT8<<16 | gc.TINT32, gc.TINT8<<16 | gc.TUINT32, gc.TINT8<<16 | gc.TINT64, gc.TINT8<<16 | gc.TUINT64: a = arm64.AMOVB goto rdst case gc.TUINT8<<16 | gc.TINT16, // zero extend uint8 gc.TUINT8<<16 | gc.TUINT16, gc.TUINT8<<16 | gc.TINT32, gc.TUINT8<<16 | gc.TUINT32, gc.TUINT8<<16 | gc.TINT64, gc.TUINT8<<16 | gc.TUINT64: a = arm64.AMOVBU goto rdst case gc.TINT16<<16 | gc.TINT32, // sign extend int16 gc.TINT16<<16 | gc.TUINT32, gc.TINT16<<16 | gc.TINT64, gc.TINT16<<16 | gc.TUINT64: a = arm64.AMOVH goto rdst case gc.TUINT16<<16 | gc.TINT32, // zero extend uint16 gc.TUINT16<<16 | gc.TUINT32, gc.TUINT16<<16 | gc.TINT64, gc.TUINT16<<16 | gc.TUINT64: a = arm64.AMOVHU goto rdst case gc.TINT32<<16 | gc.TINT64, // sign extend int32 gc.TINT32<<16 | gc.TUINT64: a = arm64.AMOVW goto rdst case gc.TUINT32<<16 | gc.TINT64, // zero extend uint32 gc.TUINT32<<16 | gc.TUINT64: a = arm64.AMOVWU goto rdst /* * float to integer */ case gc.TFLOAT32<<16 | gc.TINT32: a = arm64.AFCVTZSSW goto rdst case gc.TFLOAT64<<16 | gc.TINT32: a = arm64.AFCVTZSDW goto rdst case gc.TFLOAT32<<16 | gc.TINT64: a = arm64.AFCVTZSS goto rdst case gc.TFLOAT64<<16 | gc.TINT64: a = arm64.AFCVTZSD goto rdst case gc.TFLOAT32<<16 | gc.TUINT32: a = arm64.AFCVTZUSW goto rdst case gc.TFLOAT64<<16 | gc.TUINT32: a = arm64.AFCVTZUDW goto rdst case gc.TFLOAT32<<16 | gc.TUINT64: a = arm64.AFCVTZUS goto rdst case gc.TFLOAT64<<16 | gc.TUINT64: a = arm64.AFCVTZUD goto rdst case gc.TFLOAT32<<16 | gc.TINT16, gc.TFLOAT32<<16 | gc.TINT8, gc.TFLOAT64<<16 | gc.TINT16, gc.TFLOAT64<<16 | gc.TINT8: cvt = gc.Types[gc.TINT32] goto hard case gc.TFLOAT32<<16 | gc.TUINT16, gc.TFLOAT32<<16 | gc.TUINT8, gc.TFLOAT64<<16 | gc.TUINT16, gc.TFLOAT64<<16 | gc.TUINT8: cvt = gc.Types[gc.TUINT32] goto hard /* * integer to float */ case gc.TINT8<<16 | gc.TFLOAT32, gc.TINT16<<16 | gc.TFLOAT32, gc.TINT32<<16 | gc.TFLOAT32: a = arm64.ASCVTFWS goto rdst case gc.TINT8<<16 | gc.TFLOAT64, gc.TINT16<<16 | gc.TFLOAT64, gc.TINT32<<16 | gc.TFLOAT64: a = arm64.ASCVTFWD goto rdst case gc.TINT64<<16 | gc.TFLOAT32: a = arm64.ASCVTFS goto rdst case gc.TINT64<<16 | gc.TFLOAT64: a = arm64.ASCVTFD goto rdst case gc.TUINT8<<16 | gc.TFLOAT32, gc.TUINT16<<16 | gc.TFLOAT32, gc.TUINT32<<16 | gc.TFLOAT32: a = arm64.AUCVTFWS goto rdst case gc.TUINT8<<16 | gc.TFLOAT64, gc.TUINT16<<16 | gc.TFLOAT64, gc.TUINT32<<16 | gc.TFLOAT64: a = arm64.AUCVTFWD goto rdst case gc.TUINT64<<16 | gc.TFLOAT32: a = arm64.AUCVTFS goto rdst case gc.TUINT64<<16 | gc.TFLOAT64: a = arm64.AUCVTFD goto rdst /* * float to float */ case gc.TFLOAT32<<16 | gc.TFLOAT32: a = arm64.AFMOVS case gc.TFLOAT64<<16 | gc.TFLOAT64: a = arm64.AFMOVD case gc.TFLOAT32<<16 | gc.TFLOAT64: a = arm64.AFCVTSD goto rdst case gc.TFLOAT64<<16 | gc.TFLOAT32: a = arm64.AFCVTDS goto rdst } gins(a, f, t) return // requires register destination rdst: regalloc(&r1, t.Type, t) gins(a, f, &r1) gmove(&r1, t) regfree(&r1) return // requires register intermediate hard: regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) regfree(&r1) return } /* * generate one instruction: * as f, t */ func gins(as int, f *gc.Node, t *gc.Node) *obj.Prog { // TODO(austin): Add self-move test like in 6g (but be careful // of truncation moves) af := obj.Addr(obj.Addr{}) at := obj.Addr(obj.Addr{}) if f != nil { af = gc.Naddr(f) } if t != nil { at = gc.Naddr(t) } p := (*obj.Prog)(gc.Prog(as)) if f != nil { p.From = af } if t != nil { p.To = at } if gc.Debug['g'] != 0 { fmt.Printf("%v\n", p) } w := int32(0) switch as { case arm64.AMOVB, arm64.AMOVBU: w = 1 case arm64.AMOVH, arm64.AMOVHU: w = 2 case arm64.AMOVW, arm64.AMOVWU: w = 4 case arm64.AMOVD: if af.Type == obj.TYPE_CONST || af.Type == obj.TYPE_ADDR { break } w = 8 } if w != 0 && ((f != nil && af.Width < int64(w)) || (t != nil && at.Type != obj.TYPE_REG && at.Width > int64(w))) { gc.Dump("f", f) gc.Dump("t", t) gc.Fatal("bad width: %v (%d, %d)\n", p, af.Width, at.Width) } return p } func fixlargeoffset(n *gc.Node) { if n == nil { return } if n.Op != gc.OINDREG { return } if -4096 <= n.Xoffset && n.Xoffset < 4096 { return } a := gc.Node(*n) a.Op = gc.OREGISTER a.Type = gc.Types[gc.Tptr] a.Xoffset = 0 gc.Cgen_checknil(&a) ginscon(optoas(gc.OADD, gc.Types[gc.Tptr]), n.Xoffset, &a) n.Xoffset = 0 } /* * insert n into reg slot of p */ func raddr(n *gc.Node, p *obj.Prog) { var a obj.Addr a = gc.Naddr(n) if a.Type != obj.TYPE_REG { if n != nil { gc.Fatal("bad in raddr: %v", gc.Oconv(int(n.Op), 0)) } else { gc.Fatal("bad in raddr: <null>") } p.Reg = 0 } else { p.Reg = a.Reg } } func gcmp(as int, lhs *gc.Node, rhs *gc.Node) *obj.Prog { if lhs.Op != gc.OREGISTER { gc.Fatal("bad operands to gcmp: %v %v", gc.Oconv(int(lhs.Op), 0), gc.Oconv(int(rhs.Op), 0)) } p := gins(as, rhs, nil) raddr(lhs, p) return p } /* * return Axxx for Oxxx on type t. */ func optoas(op int, t *gc.Type) int { if t == nil { gc.Fatal("optoas: t is nil") } a := int(obj.AXXX) switch uint32(op)<<16 | uint32(gc.Simtype[t.Etype]) { default: gc.Fatal("optoas: no entry for op=%v type=%v", gc.Oconv(int(op), 0), gc.Tconv(t, 0)) case gc.OEQ<<16 | gc.TBOOL, gc.OEQ<<16 | gc.TINT8, gc.OEQ<<16 | gc.TUINT8, gc.OEQ<<16 | gc.TINT16, gc.OEQ<<16 | gc.TUINT16, gc.OEQ<<16 | gc.TINT32, gc.OEQ<<16 | gc.TUINT32, gc.OEQ<<16 | gc.TINT64, gc.OEQ<<16 | gc.TUINT64, gc.OEQ<<16 | gc.TPTR32, gc.OEQ<<16 | gc.TPTR64, gc.OEQ<<16 | gc.TFLOAT32, gc.OEQ<<16 | gc.TFLOAT64: a = arm64.ABEQ case gc.ONE<<16 | gc.TBOOL, gc.ONE<<16 | gc.TINT8, gc.ONE<<16 | gc.TUINT8, gc.ONE<<16 | gc.TINT16, gc.ONE<<16 | gc.TUINT16, gc.ONE<<16 | gc.TINT32, gc.ONE<<16 | gc.TUINT32, gc.ONE<<16 | gc.TINT64, gc.ONE<<16 | gc.TUINT64, gc.ONE<<16 | gc.TPTR32, gc.ONE<<16 | gc.TPTR64, gc.ONE<<16 | gc.TFLOAT32, gc.ONE<<16 | gc.TFLOAT64: a = arm64.ABNE case gc.OLT<<16 | gc.TINT8, gc.OLT<<16 | gc.TINT16, gc.OLT<<16 | gc.TINT32, gc.OLT<<16 | gc.TINT64: a = arm64.ABLT case gc.OLT<<16 | gc.TUINT8, gc.OLT<<16 | gc.TUINT16, gc.OLT<<16 | gc.TUINT32, gc.OLT<<16 | gc.TUINT64, gc.OLT<<16 | gc.TFLOAT32, gc.OLT<<16 | gc.TFLOAT64: a = arm64.ABLO case gc.OLE<<16 | gc.TINT8, gc.OLE<<16 | gc.TINT16, gc.OLE<<16 | gc.TINT32, gc.OLE<<16 | gc.TINT64: a = arm64.ABLE case gc.OLE<<16 | gc.TUINT8, gc.OLE<<16 | gc.TUINT16, gc.OLE<<16 | gc.TUINT32, gc.OLE<<16 | gc.TUINT64, gc.OLE<<16 | gc.TFLOAT32, gc.OLE<<16 | gc.TFLOAT64: a = arm64.ABLS case gc.OGT<<16 | gc.TINT8, gc.OGT<<16 | gc.TINT16, gc.OGT<<16 | gc.TINT32, gc.OGT<<16 | gc.TINT64, gc.OGT<<16 | gc.TFLOAT32, gc.OGT<<16 | gc.TFLOAT64: a = arm64.ABGT case gc.OGT<<16 | gc.TUINT8, gc.OGT<<16 | gc.TUINT16, gc.OGT<<16 | gc.TUINT32, gc.OGT<<16 | gc.TUINT64: a = arm64.ABHI case gc.OGE<<16 | gc.TINT8, gc.OGE<<16 | gc.TINT16, gc.OGE<<16 | gc.TINT32, gc.OGE<<16 | gc.TINT64, gc.OGE<<16 | gc.TFLOAT32, gc.OGE<<16 | gc.TFLOAT64: a = arm64.ABGE case gc.OGE<<16 | gc.TUINT8, gc.OGE<<16 | gc.TUINT16, gc.OGE<<16 | gc.TUINT32, gc.OGE<<16 | gc.TUINT64: a = arm64.ABHS case gc.OCMP<<16 | gc.TBOOL, gc.OCMP<<16 | gc.TINT8, gc.OCMP<<16 | gc.TINT16, gc.OCMP<<16 | gc.TINT32, gc.OCMP<<16 | gc.TPTR32, gc.OCMP<<16 | gc.TINT64, gc.OCMP<<16 | gc.TUINT8, gc.OCMP<<16 | gc.TUINT16, gc.OCMP<<16 | gc.TUINT32, gc.OCMP<<16 | gc.TUINT64, gc.OCMP<<16 | gc.TPTR64: a = arm64.ACMP case gc.OCMP<<16 | gc.TFLOAT32: a = arm64.AFCMPS case gc.OCMP<<16 | gc.TFLOAT64: a = arm64.AFCMPD case gc.OAS<<16 | gc.TBOOL, gc.OAS<<16 | gc.TINT8: a = arm64.AMOVB case gc.OAS<<16 | gc.TUINT8: a = arm64.AMOVBU case gc.OAS<<16 | gc.TINT16: a = arm64.AMOVH case gc.OAS<<16 | gc.TUINT16: a = arm64.AMOVHU case gc.OAS<<16 | gc.TINT32: a = arm64.AMOVW case gc.OAS<<16 | gc.TUINT32, gc.OAS<<16 | gc.TPTR32: a = arm64.AMOVWU case gc.OAS<<16 | gc.TINT64, gc.OAS<<16 | gc.TUINT64, gc.OAS<<16 | gc.TPTR64: a = arm64.AMOVD case gc.OAS<<16 | gc.TFLOAT32: a = arm64.AFMOVS case gc.OAS<<16 | gc.TFLOAT64: a = arm64.AFMOVD case gc.OADD<<16 | gc.TINT8, gc.OADD<<16 | gc.TUINT8, gc.OADD<<16 | gc.TINT16, gc.OADD<<16 | gc.TUINT16, gc.OADD<<16 | gc.TINT32, gc.OADD<<16 | gc.TUINT32, gc.OADD<<16 | gc.TPTR32, gc.OADD<<16 | gc.TINT64, gc.OADD<<16 | gc.TUINT64, gc.OADD<<16 | gc.TPTR64: a = arm64.AADD case gc.OADD<<16 | gc.TFLOAT32: a = arm64.AFADDS case gc.OADD<<16 | gc.TFLOAT64: a = arm64.AFADDD case gc.OSUB<<16 | gc.TINT8, gc.OSUB<<16 | gc.TUINT8, gc.OSUB<<16 | gc.TINT16, gc.OSUB<<16 | gc.TUINT16, gc.OSUB<<16 | gc.TINT32, gc.OSUB<<16 | gc.TUINT32, gc.OSUB<<16 | gc.TPTR32, gc.OSUB<<16 | gc.TINT64, gc.OSUB<<16 | gc.TUINT64, gc.OSUB<<16 | gc.TPTR64: a = arm64.ASUB case gc.OSUB<<16 | gc.TFLOAT32: a = arm64.AFSUBS case gc.OSUB<<16 | gc.TFLOAT64: a = arm64.AFSUBD case gc.OMINUS<<16 | gc.TINT8, gc.OMINUS<<16 | gc.TUINT8, gc.OMINUS<<16 | gc.TINT16, gc.OMINUS<<16 | gc.TUINT16, gc.OMINUS<<16 | gc.TINT32, gc.OMINUS<<16 | gc.TUINT32, gc.OMINUS<<16 | gc.TPTR32, gc.OMINUS<<16 | gc.TINT64, gc.OMINUS<<16 | gc.TUINT64, gc.OMINUS<<16 | gc.TPTR64: a = arm64.ANEG case gc.OMINUS<<16 | gc.TFLOAT32: a = arm64.AFNEGS case gc.OMINUS<<16 | gc.TFLOAT64: a = arm64.AFNEGD case gc.OAND<<16 | gc.TINT8, gc.OAND<<16 | gc.TUINT8, gc.OAND<<16 | gc.TINT16, gc.OAND<<16 | gc.TUINT16, gc.OAND<<16 | gc.TINT32, gc.OAND<<16 | gc.TUINT32, gc.OAND<<16 | gc.TPTR32, gc.OAND<<16 | gc.TINT64, gc.OAND<<16 | gc.TUINT64, gc.OAND<<16 | gc.TPTR64: a = arm64.AAND case gc.OOR<<16 | gc.TINT8, gc.OOR<<16 | gc.TUINT8, gc.OOR<<16 | gc.TINT16, gc.OOR<<16 | gc.TUINT16, gc.OOR<<16 | gc.TINT32, gc.OOR<<16 | gc.TUINT32, gc.OOR<<16 | gc.TPTR32, gc.OOR<<16 | gc.TINT64, gc.OOR<<16 | gc.TUINT64, gc.OOR<<16 | gc.TPTR64: a = arm64.AORR case gc.OXOR<<16 | gc.TINT8, gc.OXOR<<16 | gc.TUINT8, gc.OXOR<<16 | gc.TINT16, gc.OXOR<<16 | gc.TUINT16, gc.OXOR<<16 | gc.TINT32, gc.OXOR<<16 | gc.TUINT32, gc.OXOR<<16 | gc.TPTR32, gc.OXOR<<16 | gc.TINT64, gc.OXOR<<16 | gc.TUINT64, gc.OXOR<<16 | gc.TPTR64: a = arm64.AEOR // TODO(minux): handle rotates //case CASE(OLROT, TINT8): //case CASE(OLROT, TUINT8): //case CASE(OLROT, TINT16): //case CASE(OLROT, TUINT16): //case CASE(OLROT, TINT32): //case CASE(OLROT, TUINT32): //case CASE(OLROT, TPTR32): //case CASE(OLROT, TINT64): //case CASE(OLROT, TUINT64): //case CASE(OLROT, TPTR64): // a = 0//???; RLDC? // break; case gc.OLSH<<16 | gc.TINT8, gc.OLSH<<16 | gc.TUINT8, gc.OLSH<<16 | gc.TINT16, gc.OLSH<<16 | gc.TUINT16, gc.OLSH<<16 | gc.TINT32, gc.OLSH<<16 | gc.TUINT32, gc.OLSH<<16 | gc.TPTR32, gc.OLSH<<16 | gc.TINT64, gc.OLSH<<16 | gc.TUINT64, gc.OLSH<<16 | gc.TPTR64: a = arm64.ALSL case gc.ORSH<<16 | gc.TUINT8, gc.ORSH<<16 | gc.TUINT16, gc.ORSH<<16 | gc.TUINT32, gc.ORSH<<16 | gc.TPTR32, gc.ORSH<<16 | gc.TUINT64, gc.ORSH<<16 | gc.TPTR64: a = arm64.ALSR case gc.ORSH<<16 | gc.TINT8, gc.ORSH<<16 | gc.TINT16, gc.ORSH<<16 | gc.TINT32, gc.ORSH<<16 | gc.TINT64: a = arm64.AASR // TODO(minux): handle rotates //case CASE(ORROTC, TINT8): //case CASE(ORROTC, TUINT8): //case CASE(ORROTC, TINT16): //case CASE(ORROTC, TUINT16): //case CASE(ORROTC, TINT32): //case CASE(ORROTC, TUINT32): //case CASE(ORROTC, TINT64): //case CASE(ORROTC, TUINT64): // a = 0//??? RLDC?? // break; case gc.OHMUL<<16 | gc.TINT64: a = arm64.ASMULH case gc.OHMUL<<16 | gc.TUINT64, gc.OHMUL<<16 | gc.TPTR64: a = arm64.AUMULH case gc.OMUL<<16 | gc.TINT8, gc.OMUL<<16 | gc.TINT16, gc.OMUL<<16 | gc.TINT32: a = arm64.ASMULL case gc.OMUL<<16 | gc.TINT64: a = arm64.AMUL case gc.OMUL<<16 | gc.TUINT8, gc.OMUL<<16 | gc.TUINT16, gc.OMUL<<16 | gc.TUINT32, gc.OMUL<<16 | gc.TPTR32: // don't use word multiply, the high 32-bit are undefined. a = arm64.AUMULL case gc.OMUL<<16 | gc.TUINT64, gc.OMUL<<16 | gc.TPTR64: a = arm64.AMUL // for 64-bit multiplies, signedness doesn't matter. case gc.OMUL<<16 | gc.TFLOAT32: a = arm64.AFMULS case gc.OMUL<<16 | gc.TFLOAT64: a = arm64.AFMULD case gc.ODIV<<16 | gc.TINT8, gc.ODIV<<16 | gc.TINT16, gc.ODIV<<16 | gc.TINT32, gc.ODIV<<16 | gc.TINT64: a = arm64.ASDIV case gc.ODIV<<16 | gc.TUINT8, gc.ODIV<<16 | gc.TUINT16, gc.ODIV<<16 | gc.TUINT32, gc.ODIV<<16 | gc.TPTR32, gc.ODIV<<16 | gc.TUINT64, gc.ODIV<<16 | gc.TPTR64: a = arm64.AUDIV case gc.ODIV<<16 | gc.TFLOAT32: a = arm64.AFDIVS case gc.ODIV<<16 | gc.TFLOAT64: a = arm64.AFDIVD } return a } const ( ODynam = 1 << 0 OAddable = 1 << 1 ) func xgen(n *gc.Node, a *gc.Node, o int) bool { // TODO(minux) return -1 != 0 /*TypeKind(100016)*/ } func sudoclean() { return } /* * generate code to compute address of n, * a reference to a (perhaps nested) field inside * an array or struct. * return 0 on failure, 1 on success. * on success, leaves usable address in a. * * caller is responsible for calling sudoclean * after successful sudoaddable, * to release the register used for a. */ func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool { // TODO(minux) *a = obj.Addr{} return false }
func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { gc.Dump("\nclearfat", nl) } w := uint32(nl.Type.Width) // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := w % 4 // bytes q := w / 4 // quads if q < 4 { // Write sequence of MOV 0, off(base) instead of using STOSL. // The hope is that although the code will be slightly longer, // the MOVs will have no dependencies and pipeline better // than the unrolled STOSL loop. // NOTE: Must use agen, not igen, so that optimizer sees address // being taken. We are not writing on field boundaries. var n1 gc.Node gc.Regalloc(&n1, gc.Types[gc.Tptr], nil) gc.Agen(nl, &n1) n1.Op = gc.OINDREG var z gc.Node gc.Nodconst(&z, gc.Types[gc.TUINT64], 0) for { tmp14 := q q-- if tmp14 <= 0 { break } n1.Type = z.Type gins(x86.AMOVL, &z, &n1) n1.Xoffset += 4 } gc.Nodconst(&z, gc.Types[gc.TUINT8], 0) for { tmp15 := c c-- if tmp15 <= 0 { break } n1.Type = z.Type gins(x86.AMOVB, &z, &n1) n1.Xoffset++ } gc.Regfree(&n1) return } var n1 gc.Node gc.Nodreg(&n1, gc.Types[gc.Tptr], x86.REG_DI) gc.Agen(nl, &n1) gconreg(x86.AMOVL, 0, x86.REG_AX) if q > 128 || (q >= 4 && gc.Nacl) { gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFZERO, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) // 1 and 128 = magic constants: see ../../runtime/asm_386.s p.To.Offset = 1 * (128 - int64(q)) } else { for q > 0 { gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+ q-- } } for c > 0 { gins(x86.ASTOSB, nil, nil) // STOB AL,*(DI)+ c-- } }
func ginsnop() { var r gc.Node gc.Nodreg(&r, gc.Types[gc.TINT], arm.REG_R0) p := gins(arm.AAND, &r, &r) p.Scond = arm.C_SCOND_EQ }
func stackcopy(n, ns *gc.Node, osrc, odst, w int64) { var noddi gc.Node gc.Nodreg(&noddi, gc.Types[gc.Tptr], x86.REG_DI) var nodsi gc.Node gc.Nodreg(&nodsi, gc.Types[gc.Tptr], x86.REG_SI) var nodl gc.Node var nodr gc.Node if n.Ullman >= ns.Ullman { gc.Agenr(n, &nodr, &nodsi) if ns.Op == gc.ONAME { gc.Gvardef(ns) } gc.Agenr(ns, &nodl, &noddi) } else { if ns.Op == gc.ONAME { gc.Gvardef(ns) } gc.Agenr(ns, &nodl, &noddi) gc.Agenr(n, &nodr, &nodsi) } if nodl.Val.U.Reg != x86.REG_DI { gmove(&nodl, &noddi) } if nodr.Val.U.Reg != x86.REG_SI { gmove(&nodr, &nodsi) } gc.Regfree(&nodl) gc.Regfree(&nodr) c := w % 8 // bytes q := w / 8 // quads var oldcx gc.Node var cx gc.Node savex(x86.REG_CX, &cx, &oldcx, nil, gc.Types[gc.TINT64]) // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && odst < osrc+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(addptr, w-1, x86.REG_SI) gconreg(addptr, w-1, x86.REG_DI) gconreg(movptr, c, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(addptr, -7, x86.REG_SI) gconreg(addptr, -7, x86.REG_DI) } else { gconreg(addptr, w-8, x86.REG_SI) gconreg(addptr, w-8, x86.REG_DI) } gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { // normal direction if q > 128 || (gc.Nacl && q >= 4) { gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 14 and 128 = magic constants: see ../../runtime/asm_amd64.s p.To.Offset = 14 * (128 - q) } else if !gc.Nacl && c == 0 { // We don't need the MOVSQ side-effect of updating SI and DI, // and issuing a sequence of MOVQs directly is faster. nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG for q > 0 { gmove(&nodsi, &cx) // MOVQ x+(SI),CX gmove(&cx, &noddi) // MOVQ CX,x+(DI) nodsi.Xoffset += 8 noddi.Xoffset += 8 q-- } } else { for q > 0 { gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ q-- } } // copy the remaining c bytes if w < 4 || c <= 1 || (odst < osrc && osrc < odst+w) { for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } else if w < 8 || c <= 4 { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT32] nodsi.Type = gc.Types[gc.TINT32] noddi.Type = gc.Types[gc.TINT32] if c > 4 { nodsi.Xoffset = 0 noddi.Xoffset = 0 gmove(&nodsi, &cx) gmove(&cx, &noddi) } nodsi.Xoffset = c - 4 noddi.Xoffset = c - 4 gmove(&nodsi, &cx) gmove(&cx, &noddi) } else { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT64] nodsi.Type = gc.Types[gc.TINT64] noddi.Type = gc.Types[gc.TINT64] nodsi.Xoffset = c - 8 noddi.Xoffset = c - 8 gmove(&nodsi, &cx) gmove(&cx, &noddi) } } restx(&cx, &oldcx) }
/* * generate: * call f * proc=-1 normal call but no return * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack * proc=3 normal call to C pointer (not Go func value) */ func ginscall(f *gc.Node, proc int) { if f.Type != nil { extra := int32(0) if proc == 1 || proc == 2 { extra = 2 * int32(gc.Widthptr) } gc.Setmaxarg(f.Type, extra) } switch proc { default: gc.Fatal("ginscall: bad proc %d", proc) case 0, // normal call -1: // normal call but no return if f.Op == gc.ONAME && f.Class == gc.PFUNC { if f == gc.Deferreturn { // Deferred calls will appear to be returning to // the CALL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction byte before the return PC. // To avoid that being an unrelated instruction, // insert an x86 NOP that we will have the right line number. // x86 NOP 0x90 is really XCHG AX, AX; use that description // because the NOP pseudo-instruction will be removed by // the linker. var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], x86.REG_AX) gins(x86.AXCHGL, ®, ®) } p := gins(obj.ACALL, nil, f) gc.Afunclit(&p.To, f) if proc == -1 || gc.Noreturn(p) { gins(obj.AUNDEF, nil, nil) } break } var reg gc.Node gc.Nodreg(®, gc.Types[gc.Tptr], x86.REG_DX) var r1 gc.Node gc.Nodreg(&r1, gc.Types[gc.Tptr], x86.REG_BX) gmove(f, ®) reg.Op = gc.OINDREG gmove(®, &r1) reg.Op = gc.OREGISTER gins(obj.ACALL, ®, &r1) case 3: // normal call of c function pointer gins(obj.ACALL, nil, f) case 1, // call in new proc (go) 2: // deferred call (defer) var stk gc.Node stk.Op = gc.OINDREG stk.Val.U.Reg = x86.REG_SP stk.Xoffset = 0 // size of arguments at 0(SP) var con gc.Node gc.Nodconst(&con, gc.Types[gc.TINT32], int64(gc.Argsize(f.Type))) gins(x86.AMOVL, &con, &stk) // FuncVal* at 4(SP) stk.Xoffset = int64(gc.Widthptr) gins(x86.AMOVL, f, &stk) if proc == 1 { ginscall(gc.Newproc, 0) } else { ginscall(gc.Deferproc, 0) } if proc == 2 { var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT32], x86.REG_AX) gins(x86.ATESTL, ®, ®) p := gc.Gbranch(x86.AJEQ, nil, +1) cgen_ret(nil) gc.Patch(p, gc.Pc) } } }
func floatmove(f *gc.Node, t *gc.Node) { var r1 gc.Node ft := gc.Simsimtype(f.Type) tt := gc.Simsimtype(t.Type) cvt := t.Type // cannot have two floating point memory operands. if gc.Isfloat[ft] && gc.Isfloat[tt] && gc.Ismem(f) && gc.Ismem(t) { goto hard } // convert constant to desired type if f.Op == gc.OLITERAL { var con gc.Node gc.Convconst(&con, t.Type, &f.Val) f = &con ft = gc.Simsimtype(con.Type) // some constants can't move directly to memory. if gc.Ismem(t) { // float constants come from memory. if gc.Isfloat[tt] { goto hard } } } // value -> value copy, only one memory operand. // figure out the instruction to use. // break out of switch for one-instruction gins. // goto rdst for "destination must be register". // goto hard for "convert to cvt type first". // otherwise handle and return. switch uint32(ft)<<16 | uint32(tt) { default: if gc.Thearch.Use387 { floatmove_387(f, t) } else { floatmove_sse(f, t) } return // float to very long integer. case gc.TFLOAT32<<16 | gc.TINT64, gc.TFLOAT64<<16 | gc.TINT64: if f.Op == gc.OREGISTER { cvt = f.Type goto hardmem } var r1 gc.Node gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0) if ft == gc.TFLOAT32 { gins(x86.AFMOVF, f, &r1) } else { gins(x86.AFMOVD, f, &r1) } // set round to zero mode during conversion var t1 gc.Node memname(&t1, gc.Types[gc.TUINT16]) var t2 gc.Node memname(&t2, gc.Types[gc.TUINT16]) gins(x86.AFSTCW, nil, &t1) gins(x86.AMOVW, ncon(0xf7f), &t2) gins(x86.AFLDCW, &t2, nil) if tt == gc.TINT16 { gins(x86.AFMOVWP, &r1, t) } else if tt == gc.TINT32 { gins(x86.AFMOVLP, &r1, t) } else { gins(x86.AFMOVVP, &r1, t) } gins(x86.AFLDCW, &t1, nil) return case gc.TFLOAT32<<16 | gc.TUINT64, gc.TFLOAT64<<16 | gc.TUINT64: if !gc.Ismem(f) { cvt = f.Type goto hardmem } bignodes() var f0 gc.Node gc.Nodreg(&f0, gc.Types[ft], x86.REG_F0) var f1 gc.Node gc.Nodreg(&f1, gc.Types[ft], x86.REG_F0+1) var ax gc.Node gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX) if ft == gc.TFLOAT32 { gins(x86.AFMOVF, f, &f0) } else { gins(x86.AFMOVD, f, &f0) } // if 0 > v { answer = 0 } gins(x86.AFMOVD, &zerof, &f0) gins(x86.AFUCOMIP, &f0, &f1) p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0) // if 1<<64 <= v { answer = 0 too } gins(x86.AFMOVD, &two64f, &f0) gins(x86.AFUCOMIP, &f0, &f1) p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[tt]), nil, 0) gc.Patch(p1, gc.Pc) gins(x86.AFMOVVP, &f0, t) // don't care about t, but will pop the stack var thi gc.Node var tlo gc.Node split64(t, &tlo, &thi) gins(x86.AMOVL, ncon(0), &tlo) gins(x86.AMOVL, ncon(0), &thi) splitclean() p1 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p2, gc.Pc) // in range; algorithm is: // if small enough, use native float64 -> int64 conversion. // otherwise, subtract 2^63, convert, and add it back. // set round to zero mode during conversion var t1 gc.Node memname(&t1, gc.Types[gc.TUINT16]) var t2 gc.Node memname(&t2, gc.Types[gc.TUINT16]) gins(x86.AFSTCW, nil, &t1) gins(x86.AMOVW, ncon(0xf7f), &t2) gins(x86.AFLDCW, &t2, nil) // actual work gins(x86.AFMOVD, &two63f, &f0) gins(x86.AFUCOMIP, &f0, &f1) p2 = gc.Gbranch(optoas(gc.OLE, gc.Types[tt]), nil, 0) gins(x86.AFMOVVP, &f0, t) p3 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p2, gc.Pc) gins(x86.AFMOVD, &two63f, &f0) gins(x86.AFSUBDP, &f0, &f1) gins(x86.AFMOVVP, &f0, t) split64(t, &tlo, &thi) gins(x86.AXORL, ncon(0x80000000), &thi) // + 2^63 gc.Patch(p3, gc.Pc) splitclean() // restore rounding mode gins(x86.AFLDCW, &t1, nil) gc.Patch(p1, gc.Pc) return /* * integer to float */ case gc.TINT64<<16 | gc.TFLOAT32, gc.TINT64<<16 | gc.TFLOAT64: if t.Op == gc.OREGISTER { goto hardmem } var f0 gc.Node gc.Nodreg(&f0, t.Type, x86.REG_F0) gins(x86.AFMOVV, f, &f0) if tt == gc.TFLOAT32 { gins(x86.AFMOVFP, &f0, t) } else { gins(x86.AFMOVDP, &f0, t) } return // algorithm is: // if small enough, use native int64 -> float64 conversion. // otherwise, halve (rounding to odd?), convert, and double. case gc.TUINT64<<16 | gc.TFLOAT32, gc.TUINT64<<16 | gc.TFLOAT64: var ax gc.Node gc.Nodreg(&ax, gc.Types[gc.TUINT32], x86.REG_AX) var dx gc.Node gc.Nodreg(&dx, gc.Types[gc.TUINT32], x86.REG_DX) var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX) var t1 gc.Node gc.Tempname(&t1, f.Type) var tlo gc.Node var thi gc.Node split64(&t1, &tlo, &thi) gmove(f, &t1) gins(x86.ACMPL, &thi, ncon(0)) p1 := gc.Gbranch(x86.AJLT, nil, 0) // native var r1 gc.Node gc.Nodreg(&r1, gc.Types[tt], x86.REG_F0) gins(x86.AFMOVV, &t1, &r1) if tt == gc.TFLOAT32 { gins(x86.AFMOVFP, &r1, t) } else { gins(x86.AFMOVDP, &r1, t) } p2 := gc.Gbranch(obj.AJMP, nil, 0) // simulated gc.Patch(p1, gc.Pc) gmove(&tlo, &ax) gmove(&thi, &dx) p1 = gins(x86.ASHRL, ncon(1), &ax) p1.From.Index = x86.REG_DX // double-width shift DX -> AX p1.From.Scale = 0 gins(x86.AMOVL, ncon(0), &cx) gins(x86.ASETCC, nil, &cx) gins(x86.AORL, &cx, &ax) gins(x86.ASHRL, ncon(1), &dx) gmove(&dx, &thi) gmove(&ax, &tlo) gc.Nodreg(&r1, gc.Types[tt], x86.REG_F0) var r2 gc.Node gc.Nodreg(&r2, gc.Types[tt], x86.REG_F0+1) gins(x86.AFMOVV, &t1, &r1) gins(x86.AFMOVD, &r1, &r1) gins(x86.AFADDDP, &r1, &r2) if tt == gc.TFLOAT32 { gins(x86.AFMOVFP, &r1, t) } else { gins(x86.AFMOVDP, &r1, t) } gc.Patch(p2, gc.Pc) splitclean() return } // requires register intermediate hard: gc.Regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) gc.Regfree(&r1) return // requires memory intermediate hardmem: gc.Tempname(&r1, cvt) gmove(f, &r1) gmove(&r1, t) return }
func floatmove_387(f *gc.Node, t *gc.Node) { var r1 gc.Node var a int ft := gc.Simsimtype(f.Type) tt := gc.Simsimtype(t.Type) cvt := t.Type switch uint32(ft)<<16 | uint32(tt) { default: goto fatal /* * float to integer */ case gc.TFLOAT32<<16 | gc.TINT16, gc.TFLOAT32<<16 | gc.TINT32, gc.TFLOAT32<<16 | gc.TINT64, gc.TFLOAT64<<16 | gc.TINT16, gc.TFLOAT64<<16 | gc.TINT32, gc.TFLOAT64<<16 | gc.TINT64: if t.Op == gc.OREGISTER { goto hardmem } var r1 gc.Node gc.Nodreg(&r1, gc.Types[ft], x86.REG_F0) if f.Op != gc.OREGISTER { if ft == gc.TFLOAT32 { gins(x86.AFMOVF, f, &r1) } else { gins(x86.AFMOVD, f, &r1) } } // set round to zero mode during conversion var t1 gc.Node memname(&t1, gc.Types[gc.TUINT16]) var t2 gc.Node memname(&t2, gc.Types[gc.TUINT16]) gins(x86.AFSTCW, nil, &t1) gins(x86.AMOVW, ncon(0xf7f), &t2) gins(x86.AFLDCW, &t2, nil) if tt == gc.TINT16 { gins(x86.AFMOVWP, &r1, t) } else if tt == gc.TINT32 { gins(x86.AFMOVLP, &r1, t) } else { gins(x86.AFMOVVP, &r1, t) } gins(x86.AFLDCW, &t1, nil) return // convert via int32. case gc.TFLOAT32<<16 | gc.TINT8, gc.TFLOAT32<<16 | gc.TUINT16, gc.TFLOAT32<<16 | gc.TUINT8, gc.TFLOAT64<<16 | gc.TINT8, gc.TFLOAT64<<16 | gc.TUINT16, gc.TFLOAT64<<16 | gc.TUINT8: var t1 gc.Node gc.Tempname(&t1, gc.Types[gc.TINT32]) gmove(f, &t1) switch tt { default: gc.Fatal("gmove %v", gc.Nconv(t, 0)) case gc.TINT8: gins(x86.ACMPL, &t1, ncon(-0x80&(1<<32-1))) p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TINT32]), nil, -1) gins(x86.ACMPL, &t1, ncon(0x7f)) p2 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TINT32]), nil, -1) p3 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) gc.Patch(p2, gc.Pc) gmove(ncon(-0x80&(1<<32-1)), &t1) gc.Patch(p3, gc.Pc) gmove(&t1, t) case gc.TUINT8: gins(x86.ATESTL, ncon(0xffffff00), &t1) p1 := gc.Gbranch(x86.AJEQ, nil, +1) gins(x86.AMOVL, ncon(0), &t1) gc.Patch(p1, gc.Pc) gmove(&t1, t) case gc.TUINT16: gins(x86.ATESTL, ncon(0xffff0000), &t1) p1 := gc.Gbranch(x86.AJEQ, nil, +1) gins(x86.AMOVL, ncon(0), &t1) gc.Patch(p1, gc.Pc) gmove(&t1, t) } return // convert via int64. case gc.TFLOAT32<<16 | gc.TUINT32, gc.TFLOAT64<<16 | gc.TUINT32: cvt = gc.Types[gc.TINT64] goto hardmem /* * integer to float */ case gc.TINT16<<16 | gc.TFLOAT32, gc.TINT16<<16 | gc.TFLOAT64, gc.TINT32<<16 | gc.TFLOAT32, gc.TINT32<<16 | gc.TFLOAT64, gc.TINT64<<16 | gc.TFLOAT32, gc.TINT64<<16 | gc.TFLOAT64: if t.Op != gc.OREGISTER { goto hard } if f.Op == gc.OREGISTER { cvt = f.Type goto hardmem } switch ft { case gc.TINT16: a = x86.AFMOVW case gc.TINT32: a = x86.AFMOVL default: a = x86.AFMOVV } // convert via int32 memory case gc.TINT8<<16 | gc.TFLOAT32, gc.TINT8<<16 | gc.TFLOAT64, gc.TUINT16<<16 | gc.TFLOAT32, gc.TUINT16<<16 | gc.TFLOAT64, gc.TUINT8<<16 | gc.TFLOAT32, gc.TUINT8<<16 | gc.TFLOAT64: cvt = gc.Types[gc.TINT32] goto hardmem // convert via int64 memory case gc.TUINT32<<16 | gc.TFLOAT32, gc.TUINT32<<16 | gc.TFLOAT64: cvt = gc.Types[gc.TINT64] goto hardmem // The way the code generator uses floating-point // registers, a move from F0 to F0 is intended as a no-op. // On the x86, it's not: it pushes a second copy of F0 // on the floating point stack. So toss it away here. // Also, F0 is the *only* register we ever evaluate // into, so we should only see register/register as F0/F0. /* * float to float */ case gc.TFLOAT32<<16 | gc.TFLOAT32, gc.TFLOAT64<<16 | gc.TFLOAT64: if gc.Ismem(f) && gc.Ismem(t) { goto hard } if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER { if f.Reg != x86.REG_F0 || t.Reg != x86.REG_F0 { goto fatal } return } a = x86.AFMOVF if ft == gc.TFLOAT64 { a = x86.AFMOVD } if gc.Ismem(t) { if f.Op != gc.OREGISTER || f.Reg != x86.REG_F0 { gc.Fatal("gmove %v", gc.Nconv(f, 0)) } a = x86.AFMOVFP if ft == gc.TFLOAT64 { a = x86.AFMOVDP } } case gc.TFLOAT32<<16 | gc.TFLOAT64: if gc.Ismem(f) && gc.Ismem(t) { goto hard } if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER { if f.Reg != x86.REG_F0 || t.Reg != x86.REG_F0 { goto fatal } return } if f.Op == gc.OREGISTER { gins(x86.AFMOVDP, f, t) } else { gins(x86.AFMOVF, f, t) } return case gc.TFLOAT64<<16 | gc.TFLOAT32: if gc.Ismem(f) && gc.Ismem(t) { goto hard } if f.Op == gc.OREGISTER && t.Op == gc.OREGISTER { var r1 gc.Node gc.Tempname(&r1, gc.Types[gc.TFLOAT32]) gins(x86.AFMOVFP, f, &r1) gins(x86.AFMOVF, &r1, t) return } if f.Op == gc.OREGISTER { gins(x86.AFMOVFP, f, t) } else { gins(x86.AFMOVD, f, t) } return } gins(a, f, t) return // requires register intermediate hard: gc.Regalloc(&r1, cvt, t) gmove(f, &r1) gmove(&r1, t) gc.Regfree(&r1) return // requires memory intermediate hardmem: gc.Tempname(&r1, cvt) gmove(f, &r1) gmove(&r1, t) return // should not happen fatal: gc.Fatal("gmove %v -> %v", gc.Nconv(f, obj.FmtLong), gc.Nconv(t, obj.FmtLong)) return }
func bgen_float(n *gc.Node, true_ int, likely int, to *obj.Prog) { nl := n.Left nr := n.Right a := int(n.Op) if true_ == 0 { // brcom is not valid on floats when NaN is involved. p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) // No need to avoid re-genning ninit. bgen_float(n, 1, -likely, p2) gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p2, gc.Pc) return } var tmp gc.Node var et int var n2 gc.Node var ax gc.Node if !gc.Thearch.Use387 { if nl.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, nl.Type) gc.Cgen(nl, &n1) nl = &n1 } if nr.Addable == 0 { var tmp gc.Node gc.Tempname(&tmp, nr.Type) gc.Cgen(nr, &tmp) nr = &tmp } var n2 gc.Node gc.Regalloc(&n2, nr.Type, nil) gmove(nr, &n2) nr = &n2 if nl.Op != gc.OREGISTER { var n3 gc.Node gc.Regalloc(&n3, nl.Type, nil) gmove(nl, &n3) nl = &n3 } if a == gc.OGE || a == gc.OGT { // only < and <= work right with NaN; reverse if needed r := nr nr = nl nl = r a = gc.Brrev(a) } gins(foptoas(gc.OCMP, nr.Type, 0), nl, nr) if nl.Op == gc.OREGISTER { gc.Regfree(nl) } gc.Regfree(nr) goto ret } else { goto x87 } x87: a = gc.Brrev(a) // because the args are stacked if a == gc.OGE || a == gc.OGT { // only < and <= work right with NaN; reverse if needed r := nr nr = nl nl = r a = gc.Brrev(a) } gc.Nodreg(&tmp, nr.Type, x86.REG_F0) gc.Nodreg(&n2, nr.Type, x86.REG_F0+1) gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX) et = gc.Simsimtype(nr.Type) if et == gc.TFLOAT64 { if nl.Ullman > nr.Ullman { gc.Cgen(nl, &tmp) gc.Cgen(nr, &tmp) gins(x86.AFXCHD, &tmp, &n2) } else { gc.Cgen(nr, &tmp) gc.Cgen(nl, &tmp) } gins(x86.AFUCOMIP, &tmp, &n2) gins(x86.AFMOVDP, &tmp, &tmp) // annoying pop but still better than STSW+SAHF } else { // TODO(rsc): The moves back and forth to memory // here are for truncating the value to 32 bits. // This handles 32-bit comparison but presumably // all the other ops have the same problem. // We need to figure out what the right general // solution is, besides telling people to use float64. var t1 gc.Node gc.Tempname(&t1, gc.Types[gc.TFLOAT32]) var t2 gc.Node gc.Tempname(&t2, gc.Types[gc.TFLOAT32]) gc.Cgen(nr, &t1) gc.Cgen(nl, &t2) gmove(&t2, &tmp) gins(x86.AFCOMFP, &t1, &tmp) gins(x86.AFSTSW, nil, &ax) gins(x86.ASAHF, nil, nil) } goto ret ret: if a == gc.OEQ { // neither NE nor P p1 := gc.Gbranch(x86.AJNE, nil, -likely) p2 := gc.Gbranch(x86.AJPS, nil, -likely) gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) gc.Patch(p1, gc.Pc) gc.Patch(p2, gc.Pc) } else if a == gc.ONE { // either NE or P gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to) gc.Patch(gc.Gbranch(x86.AJPS, nil, likely), to) } else { gc.Patch(gc.Gbranch(optoas(a, nr.Type), nil, likely), to) } }
func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { fmt.Printf("clearfat %v (%v, size: %d)\n", nl, nl.Type, nl.Type.Width) } w := uint64(uint64(nl.Type.Width)) // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := uint64(w % 8) // bytes q := uint64(w / 8) // dwords if reg[arm64.REGRT1-arm64.REG_R0] > 0 { gc.Fatal("R%d in use during clearfat", arm64.REGRT1-arm64.REG_R0) } var r0 gc.Node gc.Nodreg(&r0, gc.Types[gc.TUINT64], arm64.REGZERO) var dst gc.Node gc.Nodreg(&dst, gc.Types[gc.Tptr], arm64.REGRT1) reg[arm64.REGRT1-arm64.REG_R0]++ gc.Agen(nl, &dst) var boff uint64 if q > 128 { p := gins(arm64.ASUB, nil, &dst) p.From.Type = obj.TYPE_CONST p.From.Offset = 8 var end gc.Node gc.Regalloc(&end, gc.Types[gc.Tptr], nil) p = gins(arm64.AMOVD, &dst, &end) p.From.Type = obj.TYPE_ADDR p.From.Offset = int64(q * 8) p = gins(arm64.AMOVD, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 8 p.Scond = arm64.C_XPRE pl := (*obj.Prog)(p) p = gcmp(arm64.ACMP, &dst, &end) gc.Patch(gc.Gbranch(arm64.ABNE, nil, 0), pl) gc.Regfree(&end) // The loop leaves R16 on the last zeroed dword boff = 8 } else if q >= 4 && !darwin { // darwin ld64 cannot handle BR26 reloc with non-zero addend p := gins(arm64.ASUB, nil, &dst) p.From.Type = obj.TYPE_CONST p.From.Offset = 8 f := (*gc.Node)(gc.Sysfunc("duffzero")) p = gins(obj.ADUFFZERO, nil, f) gc.Afunclit(&p.To, f) // 4 and 128 = magic constants: see ../../runtime/asm_arm64x.s p.To.Offset = int64(4 * (128 - q)) // duffzero leaves R16 on the last zeroed dword boff = 8 } else { var p *obj.Prog for t := uint64(0); t < q; t++ { p = gins(arm64.AMOVD, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(8 * t) } boff = 8 * q } var p *obj.Prog for t := uint64(0); t < c; t++ { p = gins(arm64.AMOVB, &r0, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(t + boff) } reg[arm64.REGRT1-arm64.REG_R0]-- }