/* * call to n has already been generated. * generate: * res = &return value from call. */ func cgen_aret(n *gc.Node, res *gc.Node) { t := n.Left.Type if gc.Isptr[t.Etype] { t = t.Type } var flist gc.Iter fp := gc.Structfirst(&flist, gc.Getoutarg(t)) if fp == nil { gc.Fatal("cgen_aret: nil") } var nod1 gc.Node nod1.Op = gc.OINDREG nod1.Val.U.Reg = x86.REG_SP nod1.Addable = 1 nod1.Xoffset = fp.Width nod1.Type = fp.Type if res.Op != gc.OREGISTER { var nod2 gc.Node regalloc(&nod2, gc.Types[gc.Tptr], res) gins(x86.ALEAL, &nod1, &nod2) gins(x86.AMOVL, &nod2, res) regfree(&nod2) } else { gins(x86.ALEAL, &nod1, res) } }
/* * call to n has already been generated. * generate: * res = &return value from call. */ func cgen_aret(n *gc.Node, res *gc.Node) { t := n.Left.Type if gc.Isptr[t.Etype] { t = t.Type } var flist gc.Iter fp := gc.Structfirst(&flist, gc.Getoutarg(t)) if fp == nil { gc.Fatal("cgen_aret: nil") } var nod1 gc.Node nod1.Op = gc.OINDREG nod1.Val.U.Reg = ppc64.REGSP nod1.Addable = 1 nod1.Xoffset = fp.Width + int64(gc.Widthptr) // +widthptr: saved lr at 0(SP) nod1.Type = fp.Type if res.Op != gc.OREGISTER { var nod2 gc.Node regalloc(&nod2, gc.Types[gc.Tptr], res) agen(&nod1, &nod2) gins(ppc64.AMOVD, &nod2, res) regfree(&nod2) } else { agen(&nod1, res) } }
/* * peep.c */ func mgen(n *gc.Node, n1 *gc.Node, rg *gc.Node) { n1.Op = gc.OEMPTY if n.Addable != 0 { *n1 = *n if n1.Op == gc.OREGISTER || n1.Op == gc.OINDREG { reg[n.Val.U.Reg]++ } return } gc.Tempname(n1, n.Type) cgen(n, n1) if n.Type.Width <= int64(gc.Widthptr) || gc.Isfloat[n.Type.Etype] { n2 := *n1 regalloc(n1, n.Type, rg) gmove(&n2, n1) } }
/* * call to n has already been generated. * generate: * res = return value from call. */ func cgen_callret(n *gc.Node, res *gc.Node) { t := n.Left.Type if t.Etype == gc.TPTR32 || t.Etype == gc.TPTR64 { t = t.Type } var flist gc.Iter fp := gc.Structfirst(&flist, gc.Getoutarg(t)) if fp == nil { gc.Fatal("cgen_callret: nil") } var nod gc.Node nod.Op = gc.OINDREG nod.Val.U.Reg = x86.REG_SP nod.Addable = 1 nod.Xoffset = fp.Width nod.Type = fp.Type gc.Cgen_as(res, &nod) }
/* * n is call to interface method. * generate res = n. */ func cgen_callinter(n *gc.Node, res *gc.Node, proc int) { i := n.Left if i.Op != gc.ODOTINTER { gc.Fatal("cgen_callinter: not ODOTINTER %v", gc.Oconv(int(i.Op), 0)) } f := i.Right // field if f.Op != gc.ONAME { gc.Fatal("cgen_callinter: not ONAME %v", gc.Oconv(int(f.Op), 0)) } i = i.Left // interface if i.Addable == 0 { var tmpi gc.Node gc.Tempname(&tmpi, i.Type) cgen(i, &tmpi) i = &tmpi } gc.Genlist(n.List) // assign the args // i is now addable, prepare an indirected // register to hold its address. var nodi gc.Node igen(i, &nodi, res) // REG = &inter var nodsp gc.Node gc.Nodindreg(&nodsp, gc.Types[gc.Tptr], x86.REG_SP) nodsp.Xoffset = 0 if proc != 0 { nodsp.Xoffset += 2 * int64(gc.Widthptr) // leave room for size & fn } nodi.Type = gc.Types[gc.Tptr] nodi.Xoffset += int64(gc.Widthptr) cgen(&nodi, &nodsp) // {0 or 8}(SP) = 4(REG) -- i.data var nodo gc.Node regalloc(&nodo, gc.Types[gc.Tptr], res) nodi.Type = gc.Types[gc.Tptr] nodi.Xoffset -= int64(gc.Widthptr) cgen(&nodi, &nodo) // REG = 0(REG) -- i.tab regfree(&nodi) var nodr gc.Node regalloc(&nodr, gc.Types[gc.Tptr], &nodo) if n.Left.Xoffset == gc.BADWIDTH { gc.Fatal("cgen_callinter: badwidth") } gc.Cgen_checknil(&nodo) nodo.Op = gc.OINDREG nodo.Xoffset = n.Left.Xoffset + 3*int64(gc.Widthptr) + 8 if proc == 0 { // plain call: use direct c function pointer - more efficient cgen(&nodo, &nodr) // REG = 20+offset(REG) -- i.tab->fun[f] proc = 3 } else { // go/defer. generate go func value. gins(x86.ALEAL, &nodo, &nodr) // REG = &(20+offset(REG)) -- i.tab->fun[f] } nodr.Type = n.Left.Type ginscall(&nodr, proc) regfree(&nodr) regfree(&nodo) }
/* * generate: * call f * proc=-1 normal call but no return * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack * proc=3 normal call to C pointer (not Go func value) */ func ginscall(f *gc.Node, proc int) { if f.Type != nil { extra := int32(0) if proc == 1 || proc == 2 { extra = 2 * int32(gc.Widthptr) } gc.Setmaxarg(f.Type, extra) } switch proc { default: gc.Fatal("ginscall: bad proc %d", proc) case 0, // normal call -1: // normal call but no return if f.Op == gc.ONAME && f.Class == gc.PFUNC { if f == gc.Deferreturn { // Deferred calls will appear to be returning to // the CALL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction byte before the return PC. // To avoid that being an unrelated instruction, // insert an x86 NOP that we will have the right line number. // x86 NOP 0x90 is really XCHG AX, AX; use that description // because the NOP pseudo-instruction will be removed by // the linker. var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], x86.REG_AX) gins(x86.AXCHGL, ®, ®) } p := gins(obj.ACALL, nil, f) gc.Afunclit(&p.To, f) if proc == -1 || gc.Noreturn(p) { gins(obj.AUNDEF, nil, nil) } break } var reg gc.Node gc.Nodreg(®, gc.Types[gc.Tptr], x86.REG_DX) var r1 gc.Node gc.Nodreg(&r1, gc.Types[gc.Tptr], x86.REG_BX) gmove(f, ®) reg.Op = gc.OINDREG gmove(®, &r1) reg.Op = gc.OREGISTER gins(obj.ACALL, ®, &r1) case 3: // normal call of c function pointer gins(obj.ACALL, nil, f) case 1, // call in new proc (go) 2: // deferred call (defer) var stk gc.Node stk.Op = gc.OINDREG stk.Val.U.Reg = x86.REG_SP stk.Xoffset = 0 // size of arguments at 0(SP) var con gc.Node gc.Nodconst(&con, gc.Types[gc.TINT32], int64(gc.Argsize(f.Type))) gins(x86.AMOVL, &con, &stk) // FuncVal* at 4(SP) stk.Xoffset = int64(gc.Widthptr) gins(x86.AMOVL, f, &stk) if proc == 1 { ginscall(gc.Newproc, 0) } else { ginscall(gc.Deferproc, 0) } if proc == 2 { var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT32], x86.REG_AX) gins(x86.ATESTL, ®, ®) p := gc.Gbranch(x86.AJEQ, nil, +1) cgen_ret(nil) gc.Patch(p, gc.Pc) } } }
func blockcopy(n, res *gc.Node, osrc, odst, w int64) { // determine alignment. // want to avoid unaligned access, so have to use // smaller operations for less aligned types. // for example moving [4]byte must use 4 MOVB not 1 MOVW. align := int(n.Type.Align) var op int switch align { default: gc.Fatal("sgen: invalid alignment %d for %v", align, n.Type) case 1: op = arm.AMOVB case 2: op = arm.AMOVH case 4: op = arm.AMOVW } if w%int64(align) != 0 { gc.Fatal("sgen: unaligned size %d (align=%d) for %v", w, align, n.Type) } c := int32(w / int64(align)) if osrc%int64(align) != 0 || odst%int64(align) != 0 { gc.Fatal("sgen: unaligned offset src %d or dst %d (align %d)", osrc, odst, align) } // if we are copying forward on the stack and // the src and dst overlap, then reverse direction dir := align if osrc < odst && int64(odst) < int64(osrc)+w { dir = -dir } if op == arm.AMOVW && !gc.Nacl && dir > 0 && c >= 4 && c <= 128 { var r0 gc.Node r0.Op = gc.OREGISTER r0.Reg = arm.REG_R0 var r1 gc.Node r1.Op = gc.OREGISTER r1.Reg = arm.REG_R0 + 1 var r2 gc.Node r2.Op = gc.OREGISTER r2.Reg = arm.REG_R0 + 2 var src gc.Node gc.Regalloc(&src, gc.Types[gc.Tptr], &r1) var dst gc.Node gc.Regalloc(&dst, gc.Types[gc.Tptr], &r2) if n.Ullman >= res.Ullman { // eval n first gc.Agen(n, &src) if res.Op == gc.ONAME { gc.Gvardef(res) } gc.Agen(res, &dst) } else { // eval res first if res.Op == gc.ONAME { gc.Gvardef(res) } gc.Agen(res, &dst) gc.Agen(n, &src) } var tmp gc.Node gc.Regalloc(&tmp, gc.Types[gc.Tptr], &r0) f := gc.Sysfunc("duffcopy") p := gins(obj.ADUFFCOPY, nil, f) gc.Afunclit(&p.To, f) // 8 and 128 = magic constants: see ../../runtime/asm_arm.s p.To.Offset = 8 * (128 - int64(c)) gc.Regfree(&tmp) gc.Regfree(&src) gc.Regfree(&dst) return } var dst gc.Node var src gc.Node if n.Ullman >= res.Ullman { gc.Agenr(n, &dst, res) // temporarily use dst gc.Regalloc(&src, gc.Types[gc.Tptr], nil) gins(arm.AMOVW, &dst, &src) if res.Op == gc.ONAME { gc.Gvardef(res) } gc.Agen(res, &dst) } else { if res.Op == gc.ONAME { gc.Gvardef(res) } gc.Agenr(res, &dst, res) gc.Agenr(n, &src, nil) } var tmp gc.Node gc.Regalloc(&tmp, gc.Types[gc.TUINT32], nil) // set up end marker var nend gc.Node if c >= 4 { gc.Regalloc(&nend, gc.Types[gc.TUINT32], nil) p := gins(arm.AMOVW, &src, &nend) p.From.Type = obj.TYPE_ADDR if dir < 0 { p.From.Offset = int64(dir) } else { p.From.Offset = w } } // move src and dest to the end of block if necessary if dir < 0 { p := gins(arm.AMOVW, &src, &src) p.From.Type = obj.TYPE_ADDR p.From.Offset = w + int64(dir) p = gins(arm.AMOVW, &dst, &dst) p.From.Type = obj.TYPE_ADDR p.From.Offset = w + int64(dir) } // move if c >= 4 { p := gins(op, &src, &tmp) p.From.Type = obj.TYPE_MEM p.From.Offset = int64(dir) p.Scond |= arm.C_PBIT ploop := p p = gins(op, &tmp, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(dir) p.Scond |= arm.C_PBIT p = gins(arm.ACMP, &src, nil) raddr(&nend, p) gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), ploop) gc.Regfree(&nend) } else { var p *obj.Prog for { tmp14 := c c-- if tmp14 <= 0 { break } p = gins(op, &src, &tmp) p.From.Type = obj.TYPE_MEM p.From.Offset = int64(dir) p.Scond |= arm.C_PBIT p = gins(op, &tmp, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(dir) p.Scond |= arm.C_PBIT } } gc.Regfree(&dst) gc.Regfree(&src) gc.Regfree(&tmp) }
func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { gc.Dump("\nclearfat", nl) } w := nl.Type.Width // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := w % 8 // bytes q := w / 8 // quads if q < 4 { // Write sequence of MOV 0, off(base) instead of using STOSQ. // The hope is that although the code will be slightly longer, // the MOVs will have no dependencies and pipeline better // than the unrolled STOSQ loop. // NOTE: Must use agen, not igen, so that optimizer sees address // being taken. We are not writing on field boundaries. var n1 gc.Node gc.Agenr(nl, &n1, nil) n1.Op = gc.OINDREG var z gc.Node gc.Nodconst(&z, gc.Types[gc.TUINT64], 0) for { tmp14 := q q-- if tmp14 <= 0 { break } n1.Type = z.Type gins(x86.AMOVQ, &z, &n1) n1.Xoffset += 8 } if c >= 4 { gc.Nodconst(&z, gc.Types[gc.TUINT32], 0) n1.Type = z.Type gins(x86.AMOVL, &z, &n1) n1.Xoffset += 4 c -= 4 } gc.Nodconst(&z, gc.Types[gc.TUINT8], 0) for { tmp15 := c c-- if tmp15 <= 0 { break } n1.Type = z.Type gins(x86.AMOVB, &z, &n1) n1.Xoffset++ } gc.Regfree(&n1) return } var oldn1 gc.Node var n1 gc.Node savex(x86.REG_DI, &n1, &oldn1, nil, gc.Types[gc.Tptr]) gc.Agen(nl, &n1) var ax gc.Node var oldax gc.Node savex(x86.REG_AX, &ax, &oldax, nil, gc.Types[gc.Tptr]) gconreg(x86.AMOVL, 0, x86.REG_AX) if q > 128 || gc.Nacl { gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.ASTOSQ, nil, nil) // STOQ AL,*(DI)+ } else { if di := dzDI(q); di != 0 { gconreg(addptr, di, x86.REG_DI) } p := gins(obj.ADUFFZERO, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) p.To.Offset = dzOff(q) } z := ax di := n1 if w >= 8 && c >= 4 { di.Op = gc.OINDREG z.Type = gc.Types[gc.TINT64] di.Type = z.Type p := gins(x86.AMOVQ, &z, &di) p.To.Scale = 1 p.To.Offset = c - 8 } else if c >= 4 { di.Op = gc.OINDREG z.Type = gc.Types[gc.TINT32] di.Type = z.Type gins(x86.AMOVL, &z, &di) if c > 4 { p := gins(x86.AMOVL, &z, &di) p.To.Scale = 1 p.To.Offset = c - 4 } } else { for c > 0 { gins(x86.ASTOSB, nil, nil) // STOB AL,*(DI)+ c-- } } restx(&n1, &oldn1) restx(&ax, &oldax) }
/* * generate: * res = &n; * The generated code checks that the result is not nil. */ func agen(n *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\nagen-res", res) gc.Dump("agen-r", n) } if n == nil || n.Type == nil { return } for n.Op == gc.OCONVNOP { n = n.Left } if gc.Isconst(n, gc.CTNIL) && n.Type.Width > int64(gc.Widthptr) { // Use of a nil interface or nil slice. // Create a temporary we can take the address of and read. // The generated code is just going to panic, so it need not // be terribly efficient. See issue 3670. var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Gvardef(&n1) clearfat(&n1) var n2 gc.Node regalloc(&n2, gc.Types[gc.Tptr], res) var n3 gc.Node n3.Op = gc.OADDR n3.Left = &n1 gins(ppc64.AMOVD, &n3, &n2) gmove(&n2, res) regfree(&n2) return } if n.Addable != 0 { var n1 gc.Node n1.Op = gc.OADDR n1.Left = n var n2 gc.Node regalloc(&n2, gc.Types[gc.Tptr], res) gins(ppc64.AMOVD, &n1, &n2) gmove(&n2, res) regfree(&n2) return } nl := n.Left switch n.Op { default: gc.Fatal("agen: unknown op %v", gc.Nconv(n, obj.FmtShort|obj.FmtSign)) // TODO(minux): 5g has this: Release res so that it is available for cgen_call. // Pick it up again after the call for OCALLMETH and OCALLFUNC. case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) cgen_aret(n, res) case gc.OCALLINTER: cgen_callinter(n, res, 0) cgen_aret(n, res) case gc.OCALLFUNC: cgen_call(n, 0) cgen_aret(n, res) case gc.OSLICE, gc.OSLICEARR, gc.OSLICESTR, gc.OSLICE3, gc.OSLICE3ARR: var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_slice(n, &n1) agen(&n1, res) case gc.OEFACE: var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_eface(n, &n1) agen(&n1, res) case gc.OINDEX: var n1 gc.Node agenr(n, &n1, res) gmove(&n1, res) regfree(&n1) // should only get here with names in this func. case gc.ONAME: if n.Funcdepth > 0 && n.Funcdepth != gc.Funcdepth { gc.Dump("bad agen", n) gc.Fatal("agen: bad ONAME funcdepth %d != %d", n.Funcdepth, gc.Funcdepth) } // should only get here for heap vars or paramref if n.Class&gc.PHEAP == 0 && n.Class != gc.PPARAMREF { gc.Dump("bad agen", n) gc.Fatal("agen: bad ONAME class %#x", n.Class) } cgen(n.Heapaddr, res) if n.Xoffset != 0 { ginsadd(optoas(gc.OADD, gc.Types[gc.Tptr]), n.Xoffset, res) } case gc.OIND: cgen(nl, res) gc.Cgen_checknil(res) case gc.ODOT: agen(nl, res) if n.Xoffset != 0 { ginsadd(optoas(gc.OADD, gc.Types[gc.Tptr]), n.Xoffset, res) } case gc.ODOTPTR: cgen(nl, res) gc.Cgen_checknil(res) if n.Xoffset != 0 { ginsadd(optoas(gc.OADD, gc.Types[gc.Tptr]), n.Xoffset, res) } } }
/* * generate: * newreg = &n; * res = newreg * * on exit, a has been changed to be *newreg. * caller must regfree(a). * The generated code checks that the result is not *nil. */ func igen(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\nigen-n", n) } switch n.Op { case gc.ONAME: if (n.Class&gc.PHEAP != 0) || n.Class == gc.PPARAMREF { break } *a = *n return // Increase the refcount of the register so that igen's caller // has to call regfree. case gc.OINDREG: if n.Val.U.Reg != x86.REG_SP { reg[n.Val.U.Reg]++ } *a = *n return case gc.ODOT: igen(n.Left, a, res) a.Xoffset += n.Xoffset a.Type = n.Type return case gc.ODOTPTR: switch n.Left.Op { // igen-able nodes. case gc.ODOT, gc.ODOTPTR, gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: var n1 gc.Node igen(n.Left, &n1, res) regalloc(a, gc.Types[gc.Tptr], &n1) gmove(&n1, a) regfree(&n1) default: regalloc(a, gc.Types[gc.Tptr], res) cgen(n.Left, a) } gc.Cgen_checknil(a) a.Op = gc.OINDREG a.Xoffset += n.Xoffset a.Type = n.Type return case gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: switch n.Op { case gc.OCALLFUNC: cgen_call(n, 0) case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) case gc.OCALLINTER: cgen_callinter(n, nil, 0) } var flist gc.Iter fp := gc.Structfirst(&flist, gc.Getoutarg(n.Left.Type)) *a = gc.Node{} a.Op = gc.OINDREG a.Val.U.Reg = x86.REG_SP a.Addable = 1 a.Xoffset = fp.Width a.Type = n.Type return // Index of fixed-size array by constant can // put the offset in the addressing. // Could do the same for slice except that we need // to use the real index for the bounds checking. case gc.OINDEX: if gc.Isfixedarray(n.Left.Type) || (gc.Isptr[n.Left.Type.Etype] && gc.Isfixedarray(n.Left.Left.Type)) { if gc.Isconst(n.Right, gc.CTINT) { // Compute &a. if !gc.Isptr[n.Left.Type.Etype] { igen(n.Left, a, res) } else { var n1 gc.Node igen(n.Left, &n1, res) gc.Cgen_checknil(&n1) regalloc(a, gc.Types[gc.Tptr], res) gmove(&n1, a) regfree(&n1) a.Op = gc.OINDREG } // Compute &a[i] as &a + i*width. a.Type = n.Type a.Xoffset += gc.Mpgetfix(n.Right.Val.U.Xval) * n.Type.Width return } } } // release register for now, to avoid // confusing tempname. if res != nil && res.Op == gc.OREGISTER { reg[res.Val.U.Reg]-- } var n1 gc.Node gc.Tempname(&n1, gc.Types[gc.Tptr]) agen(n, &n1) if res != nil && res.Op == gc.OREGISTER { reg[res.Val.U.Reg]++ } regalloc(a, gc.Types[gc.Tptr], res) gmove(&n1, a) a.Op = gc.OINDREG a.Type = n.Type }
func stackcopy(n, res *gc.Node, osrc, odst, w int64) { var dst gc.Node gc.Nodreg(&dst, gc.Types[gc.Tptr], x86.REG_DI) var src gc.Node gc.Nodreg(&src, gc.Types[gc.Tptr], x86.REG_SI) var tsrc gc.Node gc.Tempname(&tsrc, gc.Types[gc.Tptr]) var tdst gc.Node gc.Tempname(&tdst, gc.Types[gc.Tptr]) if n.Addable == 0 { gc.Agen(n, &tsrc) } if res.Addable == 0 { gc.Agen(res, &tdst) } if n.Addable != 0 { gc.Agen(n, &src) } else { gmove(&tsrc, &src) } if res.Op == gc.ONAME { gc.Gvardef(res) } if res.Addable != 0 { gc.Agen(res, &dst) } else { gmove(&tdst, &dst) } c := int32(w % 4) // bytes q := int32(w / 4) // doublewords // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && int64(odst) < int64(osrc)+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(x86.AADDL, w-1, x86.REG_SI) gconreg(x86.AADDL, w-1, x86.REG_DI) gconreg(x86.AMOVL, int64(c), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(x86.AADDL, -3, x86.REG_SI) gconreg(x86.AADDL, -3, x86.REG_DI) } else { gconreg(x86.AADDL, w-4, x86.REG_SI) gconreg(x86.AADDL, w-4, x86.REG_DI) } gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { gins(x86.ACLD, nil, nil) // paranoia. TODO(rsc): remove? // normal direction if q > 128 || (q >= 4 && gc.Nacl) { gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 10 and 128 = magic constants: see ../../runtime/asm_386.s p.To.Offset = 10 * (128 - int64(q)) } else if !gc.Nacl && c == 0 { var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX) // We don't need the MOVSL side-effect of updating SI and DI, // and issuing a sequence of MOVLs directly is faster. src.Op = gc.OINDREG dst.Op = gc.OINDREG for q > 0 { gmove(&src, &cx) // MOVL x+(SI),CX gmove(&cx, &dst) // MOVL CX,x+(DI) src.Xoffset += 4 dst.Xoffset += 4 q-- } } else { for q > 0 { gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ q-- } } for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } }
/* * block copy: * memmove(&ns, &n, w); */ func sgen(n *gc.Node, ns *gc.Node, w int64) { if gc.Debug['g'] != 0 { fmt.Printf("\nsgen w=%d\n", w) gc.Dump("r", n) gc.Dump("res", ns) } if n.Ullman >= gc.UINF && ns.Ullman >= gc.UINF { gc.Fatal("sgen UINF") } if w < 0 { gc.Fatal("sgen copy %d", w) } // If copying .args, that's all the results, so record definition sites // for them for the liveness analysis. if ns.Op == gc.ONAME && ns.Sym.Name == ".args" { for l := gc.Curfn.Dcl; l != nil; l = l.Next { if l.N.Class == gc.PPARAMOUT { gc.Gvardef(l.N) } } } // Avoid taking the address for simple enough types. if componentgen(n, ns) { return } if w == 0 { // evaluate side effects only var nodr gc.Node regalloc(&nodr, gc.Types[gc.Tptr], nil) agen(ns, &nodr) agen(n, &nodr) regfree(&nodr) return } // offset on the stack osrc := stkof(n) odst := stkof(ns) if osrc != -1000 && odst != -1000 && (osrc == 1000 || odst == 1000) { // osrc and odst both on stack, and at least one is in // an unknown position. Could generate code to test // for forward/backward copy, but instead just copy // to a temporary location first. var tmp gc.Node gc.Tempname(&tmp, n.Type) sgen(n, &tmp, w) sgen(&tmp, ns, w) return } var noddi gc.Node gc.Nodreg(&noddi, gc.Types[gc.Tptr], x86.REG_DI) var nodsi gc.Node gc.Nodreg(&nodsi, gc.Types[gc.Tptr], x86.REG_SI) var nodl gc.Node var nodr gc.Node if n.Ullman >= ns.Ullman { agenr(n, &nodr, &nodsi) if ns.Op == gc.ONAME { gc.Gvardef(ns) } agenr(ns, &nodl, &noddi) } else { if ns.Op == gc.ONAME { gc.Gvardef(ns) } agenr(ns, &nodl, &noddi) agenr(n, &nodr, &nodsi) } if nodl.Val.U.Reg != x86.REG_DI { gmove(&nodl, &noddi) } if nodr.Val.U.Reg != x86.REG_SI { gmove(&nodr, &nodsi) } regfree(&nodl) regfree(&nodr) c := w % 8 // bytes q := w / 8 // quads var oldcx gc.Node var cx gc.Node savex(x86.REG_CX, &cx, &oldcx, nil, gc.Types[gc.TINT64]) // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && odst < osrc+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(addptr, w-1, x86.REG_SI) gconreg(addptr, w-1, x86.REG_DI) gconreg(movptr, c, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(addptr, -7, x86.REG_SI) gconreg(addptr, -7, x86.REG_DI) } else { gconreg(addptr, w-8, x86.REG_SI) gconreg(addptr, w-8, x86.REG_DI) } gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { // normal direction if q > 128 || (gc.Nacl && q >= 4) { gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 14 and 128 = magic constants: see ../../runtime/asm_amd64.s p.To.Offset = 14 * (128 - q) } else if !gc.Nacl && c == 0 { // We don't need the MOVSQ side-effect of updating SI and DI, // and issuing a sequence of MOVQs directly is faster. nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG for q > 0 { gmove(&nodsi, &cx) // MOVQ x+(SI),CX gmove(&cx, &noddi) // MOVQ CX,x+(DI) nodsi.Xoffset += 8 noddi.Xoffset += 8 q-- } } else { for q > 0 { gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ q-- } } // copy the remaining c bytes if w < 4 || c <= 1 || (odst < osrc && osrc < odst+w) { for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } else if w < 8 || c <= 4 { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT32] nodsi.Type = gc.Types[gc.TINT32] noddi.Type = gc.Types[gc.TINT32] if c > 4 { nodsi.Xoffset = 0 noddi.Xoffset = 0 gmove(&nodsi, &cx) gmove(&cx, &noddi) } nodsi.Xoffset = c - 4 noddi.Xoffset = c - 4 gmove(&nodsi, &cx) gmove(&cx, &noddi) } else { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT64] nodsi.Type = gc.Types[gc.TINT64] noddi.Type = gc.Types[gc.TINT64] nodsi.Xoffset = c - 8 noddi.Xoffset = c - 8 gmove(&nodsi, &cx) gmove(&cx, &noddi) } } restx(&cx, &oldcx) }
/* * generate: * newreg = &n; * * caller must regfree(a). * The generated code checks that the result is not nil. */ func agenr(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("agenr-n", n) } nl := n.Left nr := n.Right switch n.Op { case gc.ODOT, gc.ODOTPTR, gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: var n1 gc.Node igen(n, &n1, res) regalloc(a, gc.Types[gc.Tptr], &n1) agen(&n1, a) regfree(&n1) case gc.OIND: cgenr(n.Left, a, res) gc.Cgen_checknil(a) case gc.OINDEX: var p2 *obj.Prog // to be patched to panicindex. w := uint32(n.Type.Width) bounded := gc.Debug['B'] != 0 || n.Bounded var n1 gc.Node var n3 gc.Node if nr.Addable != 0 { var tmp gc.Node if !gc.Isconst(nr, gc.CTINT) { gc.Tempname(&tmp, gc.Types[gc.TINT32]) } if !gc.Isconst(nl, gc.CTSTR) { agenr(nl, &n3, res) } if !gc.Isconst(nr, gc.CTINT) { p2 = cgenindex(nr, &tmp, bounded) regalloc(&n1, tmp.Type, nil) gmove(&tmp, &n1) } } else if nl.Addable != 0 { if !gc.Isconst(nr, gc.CTINT) { var tmp gc.Node gc.Tempname(&tmp, gc.Types[gc.TINT32]) p2 = cgenindex(nr, &tmp, bounded) regalloc(&n1, tmp.Type, nil) gmove(&tmp, &n1) } if !gc.Isconst(nl, gc.CTSTR) { agenr(nl, &n3, res) } } else { var tmp gc.Node gc.Tempname(&tmp, gc.Types[gc.TINT32]) p2 = cgenindex(nr, &tmp, bounded) nr = &tmp if !gc.Isconst(nl, gc.CTSTR) { agenr(nl, &n3, res) } regalloc(&n1, tmp.Type, nil) gins(optoas(gc.OAS, tmp.Type), &tmp, &n1) } // &a is in &n3 (allocated in res) // i is in &n1 (if not constant) // w is width // constant index if gc.Isconst(nr, gc.CTINT) { if gc.Isconst(nl, gc.CTSTR) { gc.Fatal("constant string constant index") } v := uint64(gc.Mpgetfix(nr.Val.U.Xval)) var n2 gc.Node if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { if gc.Debug['B'] == 0 && !n.Bounded { n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_nel) var n4 gc.Node regalloc(&n4, n1.Type, nil) gmove(&n1, &n4) gc.Nodconst(&n2, gc.Types[gc.TUINT32], int64(v)) gcmp(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n4, &n2) regfree(&n4) p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TUINT32]), nil, +1) ginscall(gc.Panicindex, 0) gc.Patch(p1, gc.Pc) } n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_array) gmove(&n1, &n3) } gc.Nodconst(&n2, gc.Types[gc.Tptr], int64(v*uint64(w))) gins(optoas(gc.OADD, gc.Types[gc.Tptr]), &n2, &n3) *a = n3 break } var n2 gc.Node regalloc(&n2, gc.Types[gc.TINT32], &n1) // i gmove(&n1, &n2) regfree(&n1) var n4 gc.Node if gc.Debug['B'] == 0 && !n.Bounded { // check bounds if gc.Isconst(nl, gc.CTSTR) { gc.Nodconst(&n4, gc.Types[gc.TUINT32], int64(len(nl.Val.U.Sval))) } else if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_nel) regalloc(&n4, gc.Types[gc.TUINT32], nil) gmove(&n1, &n4) } else { gc.Nodconst(&n4, gc.Types[gc.TUINT32], nl.Type.Bound) } gcmp(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n2, &n4) if n4.Op == gc.OREGISTER { regfree(&n4) } p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) if p2 != nil { gc.Patch(p2, gc.Pc) } ginscall(gc.Panicindex, 0) gc.Patch(p1, gc.Pc) } if gc.Isconst(nl, gc.CTSTR) { regalloc(&n3, gc.Types[gc.Tptr], res) p1 := gins(arm.AMOVW, nil, &n3) gc.Datastring(nl.Val.U.Sval, &p1.From) p1.From.Type = obj.TYPE_ADDR } else if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_array) gmove(&n1, &n3) } if w == 0 { } else // nothing to do if w == 1 || w == 2 || w == 4 || w == 8 { n4 = gc.Node{} n4.Op = gc.OADDR n4.Left = &n2 cgen(&n4, &n3) if w == 1 { gins(arm.AADD, &n2, &n3) } else if w == 2 { gshift(arm.AADD, &n2, arm.SHIFT_LL, 1, &n3) } else if w == 4 { gshift(arm.AADD, &n2, arm.SHIFT_LL, 2, &n3) } else if w == 8 { gshift(arm.AADD, &n2, arm.SHIFT_LL, 3, &n3) } } else { regalloc(&n4, gc.Types[gc.TUINT32], nil) gc.Nodconst(&n1, gc.Types[gc.TUINT32], int64(w)) gmove(&n1, &n4) gins(optoas(gc.OMUL, gc.Types[gc.TUINT32]), &n4, &n2) gins(optoas(gc.OADD, gc.Types[gc.Tptr]), &n2, &n3) regfree(&n4) } *a = n3 regfree(&n2) default: regalloc(a, gc.Types[gc.Tptr], res) agen(n, a) } }
/* * generate: * newreg = &n; * res = newreg * * on exit, a has been changed to be *newreg. * caller must regfree(a). * The generated code checks that the result is not *nil. */ func igen(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\nigen-n", n) } switch n.Op { case gc.ONAME: if (n.Class&gc.PHEAP != 0) || n.Class == gc.PPARAMREF { break } *a = *n return // Increase the refcount of the register so that igen's caller // has to call regfree. case gc.OINDREG: if n.Val.U.Reg != arm.REGSP { reg[n.Val.U.Reg]++ } *a = *n return case gc.ODOT: igen(n.Left, a, res) a.Xoffset += n.Xoffset a.Type = n.Type return case gc.ODOTPTR: if n.Left.Addable != 0 || n.Left.Op == gc.OCALLFUNC || n.Left.Op == gc.OCALLMETH || n.Left.Op == gc.OCALLINTER { // igen-able nodes. var n1 gc.Node igen(n.Left, &n1, res) regalloc(a, gc.Types[gc.Tptr], &n1) gmove(&n1, a) regfree(&n1) } else { regalloc(a, gc.Types[gc.Tptr], res) cgen(n.Left, a) } gc.Cgen_checknil(a) a.Op = gc.OINDREG a.Xoffset = n.Xoffset a.Type = n.Type return // Release res so that it is available for cgen_call. // Pick it up again after the call. case gc.OCALLMETH, gc.OCALLFUNC, gc.OCALLINTER: r := -1 if n.Ullman >= gc.UINF { if res != nil && (res.Op == gc.OREGISTER || res.Op == gc.OINDREG) { r = int(res.Val.U.Reg) reg[r]-- } } switch n.Op { case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) case gc.OCALLFUNC: cgen_call(n, 0) case gc.OCALLINTER: cgen_callinter(n, nil, 0) } if r >= 0 { reg[r]++ } regalloc(a, gc.Types[gc.Tptr], res) cgen_aret(n, a) a.Op = gc.OINDREG a.Type = n.Type return } agenr(n, a, res) a.Op = gc.OINDREG a.Type = n.Type }
/* * generate: * res = n; * simplifies and calls gmove. */ func cgen(n *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\ncgen-n", n) gc.Dump("cgen-res", res) } if n == nil || n.Type == nil { return } if res == nil || res.Type == nil { gc.Fatal("cgen: res nil") } switch n.Op { case gc.OSLICE, gc.OSLICEARR, gc.OSLICESTR, gc.OSLICE3, gc.OSLICE3ARR: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_slice(n, &n1) cgen(&n1, res) } else { gc.Cgen_slice(n, res) } return case gc.OEFACE: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_eface(n, &n1) cgen(&n1, res) } else { gc.Cgen_eface(n, res) } return } for n.Op == gc.OCONVNOP { n = n.Left } if n.Ullman >= gc.UINF { if n.Op == gc.OINDREG { gc.Fatal("cgen: this is going to misscompile") } if res.Ullman >= gc.UINF { var n1 gc.Node gc.Tempname(&n1, n.Type) cgen(n, &n1) cgen(&n1, res) return } } if gc.Isfat(n.Type) { if n.Type.Width < 0 { gc.Fatal("forgot to compute width for %v", gc.Tconv(n.Type, 0)) } sgen(n, res, n.Type.Width) return } // update addressability for string, slice // can't do in walk because n->left->addable // changes if n->left is an escaping local variable. switch n.Op { case gc.OSPTR, gc.OLEN: if gc.Isslice(n.Left.Type) || gc.Istype(n.Left.Type, gc.TSTRING) { n.Addable = n.Left.Addable } case gc.OCAP: if gc.Isslice(n.Left.Type) { n.Addable = n.Left.Addable } case gc.OITAB: n.Addable = n.Left.Addable } // if both are addressable, move if n.Addable != 0 && res.Addable != 0 { if gc.Is64(n.Type) || gc.Is64(res.Type) || n.Op == gc.OREGISTER || res.Op == gc.OREGISTER || gc.Iscomplex[n.Type.Etype] || gc.Iscomplex[res.Type.Etype] { gmove(n, res) } else { var n1 gc.Node regalloc(&n1, n.Type, nil) gmove(n, &n1) cgen(&n1, res) regfree(&n1) } return } // if both are not addressable, use a temporary. if n.Addable == 0 && res.Addable == 0 { // could use regalloc here sometimes, // but have to check for ullman >= UINF. var n1 gc.Node gc.Tempname(&n1, n.Type) cgen(n, &n1) cgen(&n1, res) return } // if result is not addressable directly but n is, // compute its address and then store via the address. if res.Addable == 0 { var n1 gc.Node igen(res, &n1, nil) cgen(n, &n1) regfree(&n1) return } if gc.Complexop(n, res) { gc.Complexgen(n, res) return } // if n is sudoaddable generate addr and move if !gc.Is64(n.Type) && !gc.Is64(res.Type) && !gc.Iscomplex[n.Type.Etype] && !gc.Iscomplex[res.Type.Etype] { a := optoas(gc.OAS, n.Type) var w int var addr obj.Addr if sudoaddable(a, n, &addr, &w) { if res.Op != gc.OREGISTER { var n2 gc.Node regalloc(&n2, res.Type, nil) p1 := gins(a, nil, &n2) p1.From = addr if gc.Debug['g'] != 0 { fmt.Printf("%v [ignore previous line]\n", p1) } gmove(&n2, res) regfree(&n2) } else { p1 := gins(a, nil, res) p1.From = addr if gc.Debug['g'] != 0 { fmt.Printf("%v [ignore previous line]\n", p1) } } sudoclean() return } } // otherwise, the result is addressable but n is not. // let's do some computation. nl := n.Left nr := n.Right if nl != nil && nl.Ullman >= gc.UINF { if nr != nil && nr.Ullman >= gc.UINF { var n1 gc.Node gc.Tempname(&n1, nl.Type) cgen(nl, &n1) n2 := *n n2.Left = &n1 cgen(&n2, res) return } } // 64-bit ops are hard on 32-bit machine. if gc.Is64(n.Type) || gc.Is64(res.Type) || n.Left != nil && gc.Is64(n.Left.Type) { switch n.Op { // math goes to cgen64. case gc.OMINUS, gc.OCOM, gc.OADD, gc.OSUB, gc.OMUL, gc.OLROT, gc.OLSH, gc.ORSH, gc.OAND, gc.OOR, gc.OXOR: cgen64(n, res) return } } var a int var f0 gc.Node var n1 gc.Node var n2 gc.Node if nl != nil && gc.Isfloat[n.Type.Etype] && gc.Isfloat[nl.Type.Etype] { // floating-point. regalloc(&f0, nl.Type, res) if nr != nil { goto flt2 } if n.Op == gc.OMINUS { nr = gc.Nodintconst(-1) gc.Convlit(&nr, n.Type) n.Op = gc.OMUL goto flt2 } // unary cgen(nl, &f0) if n.Op != gc.OCONV && n.Op != gc.OPLUS { gins(optoas(int(n.Op), n.Type), &f0, &f0) } gmove(&f0, res) regfree(&f0) return } switch n.Op { default: gc.Dump("cgen", n) gc.Fatal("cgen: unknown op %v", gc.Nconv(n, obj.FmtShort|obj.FmtSign)) case gc.OREAL, gc.OIMAG, gc.OCOMPLEX: gc.Fatal("unexpected complex") // these call bgen to get a bool value case gc.OOROR, gc.OANDAND, gc.OEQ, gc.ONE, gc.OLT, gc.OLE, gc.OGE, gc.OGT, gc.ONOT: p1 := gc.Gbranch(arm.AB, nil, 0) p2 := gc.Pc gmove(gc.Nodbool(true), res) p3 := gc.Gbranch(arm.AB, nil, 0) gc.Patch(p1, gc.Pc) bgen(n, true, 0, p2) gmove(gc.Nodbool(false), res) gc.Patch(p3, gc.Pc) return case gc.OPLUS: cgen(nl, res) return // unary case gc.OCOM: a := optoas(gc.OXOR, nl.Type) regalloc(&n1, nl.Type, nil) cgen(nl, &n1) gc.Nodconst(&n2, nl.Type, -1) gins(a, &n2, &n1) goto norm case gc.OMINUS: regalloc(&n1, nl.Type, nil) cgen(nl, &n1) gc.Nodconst(&n2, nl.Type, 0) gins(optoas(gc.OMINUS, nl.Type), &n2, &n1) goto norm // symmetric binary case gc.OAND, gc.OOR, gc.OXOR, gc.OADD, gc.OMUL: a = optoas(int(n.Op), nl.Type) // symmetric binary if nl.Ullman < nr.Ullman { r := nl nl = nr nr = r } goto abop // asymmetric binary case gc.OSUB: a = optoas(int(n.Op), nl.Type) goto abop case gc.OHMUL: cgen_hmul(nl, nr, res) case gc.OLROT, gc.OLSH, gc.ORSH: cgen_shift(int(n.Op), n.Bounded, nl, nr, res) case gc.OCONV: if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) { cgen(nl, res) break } var n1 gc.Node if nl.Addable != 0 && !gc.Is64(nl.Type) { regalloc(&n1, nl.Type, res) gmove(nl, &n1) } else { if n.Type.Width > int64(gc.Widthptr) || gc.Is64(nl.Type) || gc.Isfloat[nl.Type.Etype] { gc.Tempname(&n1, nl.Type) } else { regalloc(&n1, nl.Type, res) } cgen(nl, &n1) } var n2 gc.Node if n.Type.Width > int64(gc.Widthptr) || gc.Is64(n.Type) || gc.Isfloat[n.Type.Etype] { gc.Tempname(&n2, n.Type) } else { regalloc(&n2, n.Type, nil) } gmove(&n1, &n2) gmove(&n2, res) if n1.Op == gc.OREGISTER { regfree(&n1) } if n2.Op == gc.OREGISTER { regfree(&n2) } case gc.ODOT, gc.ODOTPTR, gc.OINDEX, gc.OIND, gc.ONAME: // PHEAP or PPARAMREF var var n1 gc.Node igen(n, &n1, res) gmove(&n1, res) regfree(&n1) // interface table is first word of interface value case gc.OITAB: var n1 gc.Node igen(nl, &n1, res) n1.Type = n.Type gmove(&n1, res) regfree(&n1) // pointer is the first word of string or slice. case gc.OSPTR: if gc.Isconst(nl, gc.CTSTR) { var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) p1 := gins(arm.AMOVW, nil, &n1) gc.Datastring(nl.Val.U.Sval, &p1.From) gmove(&n1, res) regfree(&n1) break } var n1 gc.Node igen(nl, &n1, res) n1.Type = n.Type gmove(&n1, res) regfree(&n1) case gc.OLEN: if gc.Istype(nl.Type, gc.TMAP) || gc.Istype(nl.Type, gc.TCHAN) { // map has len in the first 32-bit word. // a zero pointer means zero length var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gcmp(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, -1) n2 = n1 n2.Op = gc.OINDREG n2.Type = gc.Types[gc.TINT32] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Istype(nl.Type, gc.TSTRING) || gc.Isslice(nl.Type) { // both slice and string have len one pointer into the struct. var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.TUINT32] n1.Xoffset += int64(gc.Array_nel) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OLEN: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OCAP: if gc.Istype(nl.Type, gc.TCHAN) { // chan has cap in the second 32-bit word. // a zero pointer means zero length var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gcmp(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, -1) n2 = n1 n2.Op = gc.OINDREG n2.Xoffset = 4 n2.Type = gc.Types[gc.TINT32] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Isslice(nl.Type) { var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.TUINT32] n1.Xoffset += int64(gc.Array_cap) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OCAP: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OADDR: agen(nl, res) // Release res so that it is available for cgen_call. // Pick it up again after the call. case gc.OCALLMETH, gc.OCALLFUNC: rg := -1 if n.Ullman >= gc.UINF { if res != nil && (res.Op == gc.OREGISTER || res.Op == gc.OINDREG) { rg = int(res.Val.U.Reg) reg[rg]-- } } if n.Op == gc.OCALLMETH { gc.Cgen_callmeth(n, 0) } else { cgen_call(n, 0) } if rg >= 0 { reg[rg]++ } cgen_callret(n, res) case gc.OCALLINTER: cgen_callinter(n, res, 0) cgen_callret(n, res) case gc.OMOD, gc.ODIV: a = optoas(int(n.Op), nl.Type) goto abop } return // TODO(kaib): use fewer registers here. abop: // asymmetric binary if nl.Ullman >= nr.Ullman { regalloc(&n1, nl.Type, res) cgen(nl, &n1) switch n.Op { case gc.OADD, gc.OSUB, gc.OAND, gc.OOR, gc.OXOR: if gc.Smallintconst(nr) { n2 = *nr break } fallthrough default: regalloc(&n2, nr.Type, nil) cgen(nr, &n2) } } else { switch n.Op { case gc.OADD, gc.OSUB, gc.OAND, gc.OOR, gc.OXOR: if gc.Smallintconst(nr) { n2 = *nr break } fallthrough default: regalloc(&n2, nr.Type, res) cgen(nr, &n2) } regalloc(&n1, nl.Type, nil) cgen(nl, &n1) } gins(a, &n2, &n1) // Normalize result for types smaller than word. norm: if n.Type.Width < int64(gc.Widthptr) { switch n.Op { case gc.OADD, gc.OSUB, gc.OMUL, gc.OCOM, gc.OMINUS: gins(optoas(gc.OAS, n.Type), &n1, &n1) } } gmove(&n1, res) regfree(&n1) if n2.Op != gc.OLITERAL { regfree(&n2) } return flt2: // binary var f1 gc.Node if nl.Ullman >= nr.Ullman { cgen(nl, &f0) regalloc(&f1, n.Type, nil) gmove(&f0, &f1) cgen(nr, &f0) gins(optoas(int(n.Op), n.Type), &f0, &f1) } else { cgen(nr, &f0) regalloc(&f1, n.Type, nil) cgen(nl, &f1) gins(optoas(int(n.Op), n.Type), &f0, &f1) } gmove(&f1, res) regfree(&f0) regfree(&f1) return }
/* * block copy: * memmove(&res, &n, w); * NB: character copy assumed little endian architecture */ func sgen(n *gc.Node, res *gc.Node, w int64) { if gc.Debug['g'] != 0 { fmt.Printf("\nsgen w=%d\n", w) gc.Dump("r", n) gc.Dump("res", res) } if n.Ullman >= gc.UINF && res.Ullman >= gc.UINF { gc.Fatal("sgen UINF") } if w < 0 || int64(int32(w)) != w { gc.Fatal("sgen copy %d", w) } if n.Type == nil { gc.Fatal("sgen: missing type") } if w == 0 { // evaluate side effects only. var dst gc.Node regalloc(&dst, gc.Types[gc.Tptr], nil) agen(res, &dst) agen(n, &dst) regfree(&dst) return } // If copying .args, that's all the results, so record definition sites // for them for the liveness analysis. if res.Op == gc.ONAME && res.Sym.Name == ".args" { for l := gc.Curfn.Dcl; l != nil; l = l.Next { if l.N.Class == gc.PPARAMOUT { gc.Gvardef(l.N) } } } // Avoid taking the address for simple enough types. if componentgen(n, res) { return } // determine alignment. // want to avoid unaligned access, so have to use // smaller operations for less aligned types. // for example moving [4]byte must use 4 MOVB not 1 MOVW. align := int(n.Type.Align) var op int switch align { default: gc.Fatal("sgen: invalid alignment %d for %v", align, gc.Tconv(n.Type, 0)) case 1: op = arm.AMOVB case 2: op = arm.AMOVH case 4: op = arm.AMOVW } if w%int64(align) != 0 { gc.Fatal("sgen: unaligned size %d (align=%d) for %v", w, align, gc.Tconv(n.Type, 0)) } c := int32(w / int64(align)) // offset on the stack osrc := stkof(n) odst := stkof(res) if osrc != -1000 && odst != -1000 && (osrc == 1000 || odst == 1000) { // osrc and odst both on stack, and at least one is in // an unknown position. Could generate code to test // for forward/backward copy, but instead just copy // to a temporary location first. var tmp gc.Node gc.Tempname(&tmp, n.Type) sgen(n, &tmp, w) sgen(&tmp, res, w) return } if osrc%int32(align) != 0 || odst%int32(align) != 0 { gc.Fatal("sgen: unaligned offset src %d or dst %d (align %d)", osrc, odst, align) } // if we are copying forward on the stack and // the src and dst overlap, then reverse direction dir := align if osrc < odst && int64(odst) < int64(osrc)+w { dir = -dir } if op == arm.AMOVW && !gc.Nacl && dir > 0 && c >= 4 && c <= 128 { var r0 gc.Node r0.Op = gc.OREGISTER r0.Val.U.Reg = REGALLOC_R0 var r1 gc.Node r1.Op = gc.OREGISTER r1.Val.U.Reg = REGALLOC_R0 + 1 var r2 gc.Node r2.Op = gc.OREGISTER r2.Val.U.Reg = REGALLOC_R0 + 2 var src gc.Node regalloc(&src, gc.Types[gc.Tptr], &r1) var dst gc.Node regalloc(&dst, gc.Types[gc.Tptr], &r2) if n.Ullman >= res.Ullman { // eval n first agen(n, &src) if res.Op == gc.ONAME { gc.Gvardef(res) } agen(res, &dst) } else { // eval res first if res.Op == gc.ONAME { gc.Gvardef(res) } agen(res, &dst) agen(n, &src) } var tmp gc.Node regalloc(&tmp, gc.Types[gc.Tptr], &r0) f := gc.Sysfunc("duffcopy") p := gins(obj.ADUFFCOPY, nil, f) gc.Afunclit(&p.To, f) // 8 and 128 = magic constants: see ../../runtime/asm_arm.s p.To.Offset = 8 * (128 - int64(c)) regfree(&tmp) regfree(&src) regfree(&dst) return } var dst gc.Node var src gc.Node if n.Ullman >= res.Ullman { agenr(n, &dst, res) // temporarily use dst regalloc(&src, gc.Types[gc.Tptr], nil) gins(arm.AMOVW, &dst, &src) if res.Op == gc.ONAME { gc.Gvardef(res) } agen(res, &dst) } else { if res.Op == gc.ONAME { gc.Gvardef(res) } agenr(res, &dst, res) agenr(n, &src, nil) } var tmp gc.Node regalloc(&tmp, gc.Types[gc.TUINT32], nil) // set up end marker var nend gc.Node if c >= 4 { regalloc(&nend, gc.Types[gc.TUINT32], nil) p := gins(arm.AMOVW, &src, &nend) p.From.Type = obj.TYPE_ADDR if dir < 0 { p.From.Offset = int64(dir) } else { p.From.Offset = w } } // move src and dest to the end of block if necessary if dir < 0 { p := gins(arm.AMOVW, &src, &src) p.From.Type = obj.TYPE_ADDR p.From.Offset = w + int64(dir) p = gins(arm.AMOVW, &dst, &dst) p.From.Type = obj.TYPE_ADDR p.From.Offset = w + int64(dir) } // move if c >= 4 { p := gins(op, &src, &tmp) p.From.Type = obj.TYPE_MEM p.From.Offset = int64(dir) p.Scond |= arm.C_PBIT ploop := p p = gins(op, &tmp, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(dir) p.Scond |= arm.C_PBIT p = gins(arm.ACMP, &src, nil) raddr(&nend, p) gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), ploop) regfree(&nend) } else { var p *obj.Prog for { tmp14 := c c-- if tmp14 <= 0 { break } p = gins(op, &src, &tmp) p.From.Type = obj.TYPE_MEM p.From.Offset = int64(dir) p.Scond |= arm.C_PBIT p = gins(op, &tmp, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = int64(dir) p.Scond |= arm.C_PBIT } } regfree(&dst) regfree(&src) regfree(&tmp) }
/* * generate: * res = n; * simplifies and calls gmove. */ func cgen(n *gc.Node, res *gc.Node) { //print("cgen %N(%d) -> %N(%d)\n", n, n->addable, res, res->addable); if gc.Debug['g'] != 0 { gc.Dump("\ncgen-n", n) gc.Dump("cgen-res", res) } if n == nil || n.Type == nil { return } if res == nil || res.Type == nil { gc.Fatal("cgen: res nil") } for n.Op == gc.OCONVNOP { n = n.Left } switch n.Op { case gc.OSLICE, gc.OSLICEARR, gc.OSLICESTR, gc.OSLICE3, gc.OSLICE3ARR: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_slice(n, &n1) cgen(&n1, res) } else { gc.Cgen_slice(n, res) } return case gc.OEFACE: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_eface(n, &n1) cgen(&n1, res) } else { gc.Cgen_eface(n, res) } return } if n.Ullman >= gc.UINF { if n.Op == gc.OINDREG { gc.Fatal("cgen: this is going to misscompile") } if res.Ullman >= gc.UINF { var n1 gc.Node gc.Tempname(&n1, n.Type) cgen(n, &n1) cgen(&n1, res) return } } if gc.Isfat(n.Type) { if n.Type.Width < 0 { gc.Fatal("forgot to compute width for %v", gc.Tconv(n.Type, 0)) } sgen(n, res, n.Type.Width) return } if res.Addable == 0 { if n.Ullman > res.Ullman { var n1 gc.Node regalloc(&n1, n.Type, res) cgen(n, &n1) if n1.Ullman > res.Ullman { gc.Dump("n1", &n1) gc.Dump("res", res) gc.Fatal("loop in cgen") } cgen(&n1, res) regfree(&n1) return } var f int if res.Ullman >= gc.UINF { goto gen } if gc.Complexop(n, res) { gc.Complexgen(n, res) return } f = 1 // gen thru register switch n.Op { case gc.OLITERAL: if gc.Smallintconst(n) { f = 0 } case gc.OREGISTER: f = 0 } if !gc.Iscomplex[n.Type.Etype] { a := optoas(gc.OAS, res.Type) var addr obj.Addr if sudoaddable(a, res, &addr) { var p1 *obj.Prog if f != 0 { var n2 gc.Node regalloc(&n2, res.Type, nil) cgen(n, &n2) p1 = gins(a, &n2, nil) regfree(&n2) } else { p1 = gins(a, n, nil) } p1.To = addr if gc.Debug['g'] != 0 { fmt.Printf("%v [ignore previous line]\n", p1) } sudoclean() return } } gen: var n1 gc.Node igen(res, &n1, nil) cgen(n, &n1) regfree(&n1) return } // update addressability for string, slice // can't do in walk because n->left->addable // changes if n->left is an escaping local variable. switch n.Op { case gc.OSPTR, gc.OLEN: if gc.Isslice(n.Left.Type) || gc.Istype(n.Left.Type, gc.TSTRING) { n.Addable = n.Left.Addable } case gc.OCAP: if gc.Isslice(n.Left.Type) { n.Addable = n.Left.Addable } case gc.OITAB: n.Addable = n.Left.Addable } if gc.Complexop(n, res) { gc.Complexgen(n, res) return } // if both are addressable, move if n.Addable != 0 { if n.Op == gc.OREGISTER || res.Op == gc.OREGISTER { gmove(n, res) } else { var n1 gc.Node regalloc(&n1, n.Type, nil) gmove(n, &n1) cgen(&n1, res) regfree(&n1) } return } nl := n.Left nr := n.Right if nl != nil && nl.Ullman >= gc.UINF { if nr != nil && nr.Ullman >= gc.UINF { var n1 gc.Node gc.Tempname(&n1, nl.Type) cgen(nl, &n1) n2 := *n n2.Left = &n1 cgen(&n2, res) return } } if !gc.Iscomplex[n.Type.Etype] { a := optoas(gc.OAS, n.Type) var addr obj.Addr if sudoaddable(a, n, &addr) { if res.Op == gc.OREGISTER { p1 := gins(a, nil, res) p1.From = addr } else { var n2 gc.Node regalloc(&n2, n.Type, nil) p1 := gins(a, nil, &n2) p1.From = addr gins(a, &n2, res) regfree(&n2) } sudoclean() return } } // TODO(minux): we shouldn't reverse FP comparisons, but then we need to synthesize // OGE, OLE, and ONE ourselves. // if(nl != N && isfloat[n->type->etype] && isfloat[nl->type->etype]) goto flt; var a int switch n.Op { default: gc.Dump("cgen", n) gc.Fatal("cgen: unknown op %v", gc.Nconv(n, obj.FmtShort|obj.FmtSign)) // these call bgen to get a bool value case gc.OOROR, gc.OANDAND, gc.OEQ, gc.ONE, gc.OLT, gc.OLE, gc.OGE, gc.OGT, gc.ONOT: p1 := gc.Gbranch(ppc64.ABR, nil, 0) p2 := gc.Pc gmove(gc.Nodbool(true), res) p3 := gc.Gbranch(ppc64.ABR, nil, 0) gc.Patch(p1, gc.Pc) bgen(n, true, 0, p2) gmove(gc.Nodbool(false), res) gc.Patch(p3, gc.Pc) return case gc.OPLUS: cgen(nl, res) return // unary case gc.OCOM: a := optoas(gc.OXOR, nl.Type) var n1 gc.Node regalloc(&n1, nl.Type, nil) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, nl.Type, -1) gins(a, &n2, &n1) gmove(&n1, res) regfree(&n1) return case gc.OMINUS: if gc.Isfloat[nl.Type.Etype] { nr = gc.Nodintconst(-1) gc.Convlit(&nr, n.Type) a = optoas(gc.OMUL, nl.Type) goto sbop } a := optoas(int(n.Op), nl.Type) // unary var n1 gc.Node regalloc(&n1, nl.Type, res) cgen(nl, &n1) gins(a, nil, &n1) gmove(&n1, res) regfree(&n1) return // symmetric binary case gc.OAND, gc.OOR, gc.OXOR, gc.OADD, gc.OMUL: a = optoas(int(n.Op), nl.Type) goto sbop // asymmetric binary case gc.OSUB: a = optoas(int(n.Op), nl.Type) goto abop case gc.OHMUL: cgen_hmul(nl, nr, res) case gc.OCONV: if n.Type.Width > nl.Type.Width { // If loading from memory, do conversion during load, // so as to avoid use of 8-bit register in, say, int(*byteptr). switch nl.Op { case gc.ODOT, gc.ODOTPTR, gc.OINDEX, gc.OIND, gc.ONAME: var n1 gc.Node igen(nl, &n1, res) var n2 gc.Node regalloc(&n2, n.Type, res) gmove(&n1, &n2) gmove(&n2, res) regfree(&n2) regfree(&n1) return } } var n1 gc.Node regalloc(&n1, nl.Type, res) var n2 gc.Node regalloc(&n2, n.Type, &n1) cgen(nl, &n1) // if we do the conversion n1 -> n2 here // reusing the register, then gmove won't // have to allocate its own register. gmove(&n1, &n2) gmove(&n2, res) regfree(&n2) regfree(&n1) case gc.ODOT, gc.ODOTPTR, gc.OINDEX, gc.OIND, gc.ONAME: // PHEAP or PPARAMREF var var n1 gc.Node igen(n, &n1, res) gmove(&n1, res) regfree(&n1) // interface table is first word of interface value case gc.OITAB: var n1 gc.Node igen(nl, &n1, res) n1.Type = n.Type gmove(&n1, res) regfree(&n1) // pointer is the first word of string or slice. case gc.OSPTR: if gc.Isconst(nl, gc.CTSTR) { var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) p1 := gins(ppc64.AMOVD, nil, &n1) gc.Datastring(nl.Val.U.Sval, &p1.From) gmove(&n1, res) regfree(&n1) break } var n1 gc.Node igen(nl, &n1, res) n1.Type = n.Type gmove(&n1, res) regfree(&n1) case gc.OLEN: if gc.Istype(nl.Type, gc.TMAP) || gc.Istype(nl.Type, gc.TCHAN) { // map and chan have len in the first int-sized word. // a zero pointer means zero length var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, 0) n2 = n1 n2.Op = gc.OINDREG n2.Type = gc.Types[gc.Simtype[gc.TINT]] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Istype(nl.Type, gc.TSTRING) || gc.Isslice(nl.Type) { // both slice and string have len one pointer into the struct. // a zero pointer means zero length var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.Simtype[gc.TUINT]] n1.Xoffset += int64(gc.Array_nel) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OLEN: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OCAP: if gc.Istype(nl.Type, gc.TCHAN) { // chan has cap in the second int-sized word. // a zero pointer means zero length var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) cgen(nl, &n1) var n2 gc.Node gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, 0) n2 = n1 n2.Op = gc.OINDREG n2.Xoffset = int64(gc.Widthint) n2.Type = gc.Types[gc.Simtype[gc.TINT]] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Isslice(nl.Type) { var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.Simtype[gc.TUINT]] n1.Xoffset += int64(gc.Array_cap) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OCAP: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OADDR: if n.Bounded { // let race detector avoid nil checks gc.Disable_checknil++ } agen(nl, res) if n.Bounded { gc.Disable_checknil-- } case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) cgen_callret(n, res) case gc.OCALLINTER: cgen_callinter(n, res, 0) cgen_callret(n, res) case gc.OCALLFUNC: cgen_call(n, 0) cgen_callret(n, res) case gc.OMOD, gc.ODIV: if gc.Isfloat[n.Type.Etype] { a = optoas(int(n.Op), nl.Type) goto abop } if nl.Ullman >= nr.Ullman { var n1 gc.Node regalloc(&n1, nl.Type, res) cgen(nl, &n1) cgen_div(int(n.Op), &n1, nr, res) regfree(&n1) } else { var n2 gc.Node if !gc.Smallintconst(nr) { regalloc(&n2, nr.Type, res) cgen(nr, &n2) } else { n2 = *nr } cgen_div(int(n.Op), nl, &n2, res) if n2.Op != gc.OLITERAL { regfree(&n2) } } case gc.OLSH, gc.ORSH, gc.OLROT: cgen_shift(int(n.Op), n.Bounded, nl, nr, res) } return /* * put simplest on right - we'll generate into left * and then adjust it using the computation of right. * constants and variables have the same ullman * count, so look for constants specially. * * an integer constant we can use as an immediate * is simpler than a variable - we can use the immediate * in the adjustment instruction directly - so it goes * on the right. * * other constants, like big integers or floating point * constants, require a mov into a register, so those * might as well go on the left, so we can reuse that * register for the computation. */ sbop: // symmetric binary if nl.Ullman < nr.Ullman || (nl.Ullman == nr.Ullman && (gc.Smallintconst(nl) || (nr.Op == gc.OLITERAL && !gc.Smallintconst(nr)))) { r := nl nl = nr nr = r } abop: // asymmetric binary var n1 gc.Node var n2 gc.Node if nl.Ullman >= nr.Ullman { regalloc(&n1, nl.Type, res) cgen(nl, &n1) /* * This generates smaller code - it avoids a MOV - but it's * easily 10% slower due to not being able to * optimize/manipulate the move. * To see, run: go test -bench . crypto/md5 * with and without. * if(sudoaddable(a, nr, &addr)) { p1 = gins(a, N, &n1); p1->from = addr; gmove(&n1, res); sudoclean(); regfree(&n1); goto ret; } * */ // TODO(minux): enable using constants directly in certain instructions. //if(smallintconst(nr)) // n2 = *nr; //else { regalloc(&n2, nr.Type, nil) cgen(nr, &n2) } else //} { //if(smallintconst(nr)) // n2 = *nr; //else { regalloc(&n2, nr.Type, res) cgen(nr, &n2) //} regalloc(&n1, nl.Type, nil) cgen(nl, &n1) } gins(a, &n2, &n1) // Normalize result for types smaller than word. if n.Type.Width < int64(gc.Widthreg) { switch n.Op { case gc.OADD, gc.OSUB, gc.OMUL, gc.OLSH: gins(optoas(gc.OAS, n.Type), &n1, &n1) } } gmove(&n1, res) regfree(&n1) if n2.Op != gc.OLITERAL { regfree(&n2) } return }
/* * generate: * call f * proc=-1 normal call but no return * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack * proc=3 normal call to C pointer (not Go func value) */ func ginscall(f *gc.Node, proc int) { if f.Type != nil { extra := int32(0) if proc == 1 || proc == 2 { extra = 2 * int32(gc.Widthptr) } gc.Setmaxarg(f.Type, extra) } switch proc { default: gc.Fatal("ginscall: bad proc %d", proc) case 0, // normal call -1: // normal call but no return if f.Op == gc.ONAME && f.Class == gc.PFUNC { if f == gc.Deferreturn { // Deferred calls will appear to be returning to // the BL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction before that return PC. // To avoid that instruction being an unrelated instruction, // insert a NOP so that we will have the right line number. // ARM NOP 0x00000000 is really AND.EQ R0, R0, R0. // Use the latter form because the NOP pseudo-instruction // would be removed by the linker. var r gc.Node gc.Nodreg(&r, gc.Types[gc.TINT], arm.REG_R0) p := gins(arm.AAND, &r, &r) p.Scond = arm.C_SCOND_EQ } p := gins(arm.ABL, nil, f) gc.Afunclit(&p.To, f) if proc == -1 || gc.Noreturn(p) { gins(obj.AUNDEF, nil, nil) } break } var r gc.Node gc.Nodreg(&r, gc.Types[gc.Tptr], arm.REG_R7) var r1 gc.Node gc.Nodreg(&r1, gc.Types[gc.Tptr], arm.REG_R1) gmove(f, &r) r.Op = gc.OINDREG gmove(&r, &r1) r.Op = gc.OREGISTER r1.Op = gc.OINDREG gins(arm.ABL, &r, &r1) case 3: // normal call of c function pointer gins(arm.ABL, nil, f) case 1, // call in new proc (go) 2: // deferred call (defer) var r gc.Node regalloc(&r, gc.Types[gc.Tptr], nil) var con gc.Node gc.Nodconst(&con, gc.Types[gc.TINT32], int64(gc.Argsize(f.Type))) gins(arm.AMOVW, &con, &r) p := gins(arm.AMOVW, &r, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = arm.REGSP p.To.Offset = 4 gins(arm.AMOVW, f, &r) p = gins(arm.AMOVW, &r, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = arm.REGSP p.To.Offset = 8 regfree(&r) if proc == 1 { ginscall(gc.Newproc, 0) } else { ginscall(gc.Deferproc, 0) } if proc == 2 { gc.Nodconst(&con, gc.Types[gc.TINT32], 0) p := gins(arm.ACMP, &con, nil) p.Reg = arm.REG_R0 p = gc.Gbranch(arm.ABEQ, nil, +1) cgen_ret(nil) gc.Patch(p, gc.Pc) } } }
/* * generate: * res = n; * simplifies and calls gmove. * * TODO: * sudoaddable */ func cgen(n *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\ncgen-n", n) gc.Dump("cgen-res", res) } if n == nil || n.Type == nil { gc.Fatal("cgen: n nil") } if res == nil || res.Type == nil { gc.Fatal("cgen: res nil") } switch n.Op { case gc.OSLICE, gc.OSLICEARR, gc.OSLICESTR, gc.OSLICE3, gc.OSLICE3ARR: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_slice(n, &n1) cgen(&n1, res) } else { gc.Cgen_slice(n, res) } return case gc.OEFACE: if res.Op != gc.ONAME || res.Addable == 0 { var n1 gc.Node gc.Tempname(&n1, n.Type) gc.Cgen_eface(n, &n1) cgen(&n1, res) } else { gc.Cgen_eface(n, res) } return } for n.Op == gc.OCONVNOP { n = n.Left } // function calls on both sides? introduce temporary if n.Ullman >= gc.UINF && res.Ullman >= gc.UINF { var n1 gc.Node gc.Tempname(&n1, n.Type) cgen(n, &n1) cgen(&n1, res) return } // structs etc get handled specially if gc.Isfat(n.Type) { if n.Type.Width < 0 { gc.Fatal("forgot to compute width for %v", gc.Tconv(n.Type, 0)) } sgen(n, res, n.Type.Width) return } // update addressability for string, slice // can't do in walk because n->left->addable // changes if n->left is an escaping local variable. switch n.Op { case gc.OSPTR, gc.OLEN: if gc.Isslice(n.Left.Type) || gc.Istype(n.Left.Type, gc.TSTRING) { n.Addable = n.Left.Addable } case gc.OCAP: if gc.Isslice(n.Left.Type) { n.Addable = n.Left.Addable } case gc.OITAB: n.Addable = n.Left.Addable } // if both are addressable, move if n.Addable != 0 && res.Addable != 0 { gmove(n, res) return } // if both are not addressable, use a temporary. if n.Addable == 0 && res.Addable == 0 { // could use regalloc here sometimes, // but have to check for ullman >= UINF. var n1 gc.Node gc.Tempname(&n1, n.Type) cgen(n, &n1) cgen(&n1, res) return } // if result is not addressable directly but n is, // compute its address and then store via the address. if res.Addable == 0 { var n1 gc.Node igen(res, &n1, nil) cgen(n, &n1) regfree(&n1) return } // complex types if gc.Complexop(n, res) { gc.Complexgen(n, res) return } // otherwise, the result is addressable but n is not. // let's do some computation. // use ullman to pick operand to eval first. nl := n.Left nr := n.Right if nl != nil && nl.Ullman >= gc.UINF { if nr != nil && nr.Ullman >= gc.UINF { // both are hard var n1 gc.Node gc.Tempname(&n1, nl.Type) cgen(nl, &n1) n2 := *n n2.Left = &n1 cgen(&n2, res) return } } // 64-bit ops are hard on 32-bit machine. if gc.Is64(n.Type) || gc.Is64(res.Type) || n.Left != nil && gc.Is64(n.Left.Type) { switch n.Op { // math goes to cgen64. case gc.OMINUS, gc.OCOM, gc.OADD, gc.OSUB, gc.OMUL, gc.OLROT, gc.OLSH, gc.ORSH, gc.OAND, gc.OOR, gc.OXOR: cgen64(n, res) return } } if nl != nil && gc.Isfloat[n.Type.Etype] && gc.Isfloat[nl.Type.Etype] { cgen_float(n, res) return } var a int switch n.Op { default: gc.Dump("cgen", n) gc.Fatal("cgen %v", gc.Oconv(int(n.Op), 0)) case gc.OREAL, gc.OIMAG, gc.OCOMPLEX: gc.Fatal("unexpected complex") return // these call bgen to get a bool value case gc.OOROR, gc.OANDAND, gc.OEQ, gc.ONE, gc.OLT, gc.OLE, gc.OGE, gc.OGT, gc.ONOT: p1 := gc.Gbranch(obj.AJMP, nil, 0) p2 := gc.Pc gmove(gc.Nodbool(true), res) p3 := gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) bgen(n, true, 0, p2) gmove(gc.Nodbool(false), res) gc.Patch(p3, gc.Pc) return case gc.OPLUS: cgen(nl, res) return case gc.OMINUS, gc.OCOM: a := optoas(int(n.Op), nl.Type) // unary var n1 gc.Node gc.Tempname(&n1, nl.Type) cgen(nl, &n1) gins(a, nil, &n1) gmove(&n1, res) return // symmetric binary case gc.OAND, gc.OOR, gc.OXOR, gc.OADD, gc.OMUL: a = optoas(int(n.Op), nl.Type) if a == x86.AIMULB { cgen_bmul(int(n.Op), nl, nr, res) break } // symmetric binary if nl.Ullman < nr.Ullman || nl.Op == gc.OLITERAL { r := nl nl = nr nr = r } goto abop // asymmetric binary case gc.OSUB: a = optoas(int(n.Op), nl.Type) goto abop case gc.OHMUL: cgen_hmul(nl, nr, res) case gc.OCONV: if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) { cgen(nl, res) break } var n2 gc.Node gc.Tempname(&n2, n.Type) var n1 gc.Node mgen(nl, &n1, res) gmove(&n1, &n2) gmove(&n2, res) mfree(&n1) case gc.ODOT, gc.ODOTPTR, gc.OINDEX, gc.OIND, gc.ONAME: // PHEAP or PPARAMREF var var n1 gc.Node igen(n, &n1, res) gmove(&n1, res) regfree(&n1) case gc.OITAB: var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Ptrto(gc.Types[gc.TUINTPTR]) gmove(&n1, res) regfree(&n1) // pointer is the first word of string or slice. case gc.OSPTR: if gc.Isconst(nl, gc.CTSTR) { var n1 gc.Node regalloc(&n1, gc.Types[gc.Tptr], res) p1 := gins(x86.ALEAL, nil, &n1) gc.Datastring(nl.Val.U.Sval, &p1.From) gmove(&n1, res) regfree(&n1) break } var n1 gc.Node igen(nl, &n1, res) n1.Type = n.Type gmove(&n1, res) regfree(&n1) case gc.OLEN: if gc.Istype(nl.Type, gc.TMAP) || gc.Istype(nl.Type, gc.TCHAN) { // map has len in the first 32-bit word. // a zero pointer means zero length var n1 gc.Node gc.Tempname(&n1, gc.Types[gc.Tptr]) cgen(nl, &n1) var n2 gc.Node regalloc(&n2, gc.Types[gc.Tptr], nil) gmove(&n1, &n2) n1 = n2 gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, -1) n2 = n1 n2.Op = gc.OINDREG n2.Type = gc.Types[gc.TINT32] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Istype(nl.Type, gc.TSTRING) || gc.Isslice(nl.Type) { // both slice and string have len one pointer into the struct. var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.TUINT32] n1.Xoffset += int64(gc.Array_nel) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OLEN: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OCAP: if gc.Istype(nl.Type, gc.TCHAN) { // chan has cap in the second 32-bit word. // a zero pointer means zero length var n1 gc.Node gc.Tempname(&n1, gc.Types[gc.Tptr]) cgen(nl, &n1) var n2 gc.Node regalloc(&n2, gc.Types[gc.Tptr], nil) gmove(&n1, &n2) n1 = n2 gc.Nodconst(&n2, gc.Types[gc.Tptr], 0) gins(optoas(gc.OCMP, gc.Types[gc.Tptr]), &n1, &n2) p1 := gc.Gbranch(optoas(gc.OEQ, gc.Types[gc.Tptr]), nil, -1) n2 = n1 n2.Op = gc.OINDREG n2.Xoffset = 4 n2.Type = gc.Types[gc.TINT32] gmove(&n2, &n1) gc.Patch(p1, gc.Pc) gmove(&n1, res) regfree(&n1) break } if gc.Isslice(nl.Type) { var n1 gc.Node igen(nl, &n1, res) n1.Type = gc.Types[gc.TUINT32] n1.Xoffset += int64(gc.Array_cap) gmove(&n1, res) regfree(&n1) break } gc.Fatal("cgen: OCAP: unknown type %v", gc.Tconv(nl.Type, obj.FmtLong)) case gc.OADDR: agen(nl, res) case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) cgen_callret(n, res) case gc.OCALLINTER: cgen_callinter(n, res, 0) cgen_callret(n, res) case gc.OCALLFUNC: cgen_call(n, 0) cgen_callret(n, res) case gc.OMOD, gc.ODIV: cgen_div(int(n.Op), nl, nr, res) case gc.OLSH, gc.ORSH, gc.OLROT: cgen_shift(int(n.Op), n.Bounded, nl, nr, res) } return abop: // asymmetric binary if gc.Smallintconst(nr) { var n1 gc.Node mgen(nl, &n1, res) var n2 gc.Node regalloc(&n2, nl.Type, &n1) gmove(&n1, &n2) gins(a, nr, &n2) gmove(&n2, res) regfree(&n2) mfree(&n1) } else if nl.Ullman >= nr.Ullman { var nt gc.Node gc.Tempname(&nt, nl.Type) cgen(nl, &nt) var n2 gc.Node mgen(nr, &n2, nil) var n1 gc.Node regalloc(&n1, nl.Type, res) gmove(&nt, &n1) gins(a, &n2, &n1) gmove(&n1, res) regfree(&n1) mfree(&n2) } else { var n2 gc.Node regalloc(&n2, nr.Type, res) cgen(nr, &n2) var n1 gc.Node regalloc(&n1, nl.Type, nil) cgen(nl, &n1) gins(a, &n2, &n1) regfree(&n2) gmove(&n1, res) regfree(&n1) } return }
/* * generate: * newreg = &n; * res = newreg * * on exit, a has been changed to be *newreg. * caller must regfree(a). * The generated code checks that the result is not *nil. */ func igen(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("\nigen-n", n) } switch n.Op { case gc.ONAME: if (n.Class&gc.PHEAP != 0) || n.Class == gc.PPARAMREF { break } *a = *n return // Increase the refcount of the register so that igen's caller // has to call regfree. case gc.OINDREG: if n.Val.U.Reg != ppc64.REGSP { reg[n.Val.U.Reg]++ } *a = *n return case gc.ODOT: igen(n.Left, a, res) a.Xoffset += n.Xoffset a.Type = n.Type fixlargeoffset(a) return case gc.ODOTPTR: cgenr(n.Left, a, res) gc.Cgen_checknil(a) a.Op = gc.OINDREG a.Xoffset += n.Xoffset a.Type = n.Type fixlargeoffset(a) return case gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: switch n.Op { case gc.OCALLFUNC: cgen_call(n, 0) case gc.OCALLMETH: gc.Cgen_callmeth(n, 0) case gc.OCALLINTER: cgen_callinter(n, nil, 0) } var flist gc.Iter fp := gc.Structfirst(&flist, gc.Getoutarg(n.Left.Type)) *a = gc.Node{} a.Op = gc.OINDREG a.Val.U.Reg = ppc64.REGSP a.Addable = 1 a.Xoffset = fp.Width + int64(gc.Widthptr) // +widthptr: saved lr at 0(SP) a.Type = n.Type return // Index of fixed-size array by constant can // put the offset in the addressing. // Could do the same for slice except that we need // to use the real index for the bounds checking. case gc.OINDEX: if gc.Isfixedarray(n.Left.Type) || (gc.Isptr[n.Left.Type.Etype] && gc.Isfixedarray(n.Left.Left.Type)) { if gc.Isconst(n.Right, gc.CTINT) { // Compute &a. if !gc.Isptr[n.Left.Type.Etype] { igen(n.Left, a, res) } else { var n1 gc.Node igen(n.Left, &n1, res) gc.Cgen_checknil(&n1) regalloc(a, gc.Types[gc.Tptr], res) gmove(&n1, a) regfree(&n1) a.Op = gc.OINDREG } // Compute &a[i] as &a + i*width. a.Type = n.Type a.Xoffset += gc.Mpgetfix(n.Right.Val.U.Xval) * n.Type.Width fixlargeoffset(a) return } } } agenr(n, a, res) a.Op = gc.OINDREG a.Type = n.Type }
/* * n is call to interface method. * generate res = n. */ func cgen_callinter(n *gc.Node, res *gc.Node, proc int) { i := n.Left if i.Op != gc.ODOTINTER { gc.Fatal("cgen_callinter: not ODOTINTER %v", gc.Oconv(int(i.Op), 0)) } f := i.Right // field if f.Op != gc.ONAME { gc.Fatal("cgen_callinter: not ONAME %v", gc.Oconv(int(f.Op), 0)) } i = i.Left // interface // Release res register during genlist and cgen, // which might have their own function calls. r := -1 if res != nil && (res.Op == gc.OREGISTER || res.Op == gc.OINDREG) { r = int(res.Val.U.Reg) reg[r]-- } if i.Addable == 0 { var tmpi gc.Node gc.Tempname(&tmpi, i.Type) cgen(i, &tmpi) i = &tmpi } gc.Genlist(n.List) // args if r >= 0 { reg[r]++ } var nodr gc.Node regalloc(&nodr, gc.Types[gc.Tptr], res) var nodo gc.Node regalloc(&nodo, gc.Types[gc.Tptr], &nodr) nodo.Op = gc.OINDREG agen(i, &nodr) // REG = &inter var nodsp gc.Node gc.Nodindreg(&nodsp, gc.Types[gc.Tptr], arm.REGSP) nodsp.Xoffset = int64(gc.Widthptr) if proc != 0 { nodsp.Xoffset += 2 * int64(gc.Widthptr) // leave room for size & fn } nodo.Xoffset += int64(gc.Widthptr) cgen(&nodo, &nodsp) // {4 or 12}(SP) = 4(REG) -- i.data nodo.Xoffset -= int64(gc.Widthptr) cgen(&nodo, &nodr) // REG = 0(REG) -- i.tab gc.Cgen_checknil(&nodr) // in case offset is huge nodo.Xoffset = n.Left.Xoffset + 3*int64(gc.Widthptr) + 8 if proc == 0 { // plain call: use direct c function pointer - more efficient cgen(&nodo, &nodr) // REG = 20+offset(REG) -- i.tab->fun[f] nodr.Op = gc.OINDREG proc = 3 } else { // go/defer. generate go func value. p := gins(arm.AMOVW, &nodo, &nodr) p.From.Type = obj.TYPE_ADDR // REG = &(20+offset(REG)) -- i.tab->fun[f] } nodr.Type = n.Left.Type ginscall(&nodr, proc) regfree(&nodr) regfree(&nodo) }
/* * allocate a register (reusing res if possible) and generate * a = &n * The caller must call regfree(a). * The generated code checks that the result is not nil. */ func agenr(n *gc.Node, a *gc.Node, res *gc.Node) { if gc.Debug['g'] != 0 { gc.Dump("agenr-n", n) } nl := n.Left nr := n.Right switch n.Op { case gc.ODOT, gc.ODOTPTR, gc.OCALLFUNC, gc.OCALLMETH, gc.OCALLINTER: var n1 gc.Node igen(n, &n1, res) regalloc(a, gc.Types[gc.Tptr], &n1) agen(&n1, a) regfree(&n1) case gc.OIND: cgenr(n.Left, a, res) gc.Cgen_checknil(a) case gc.OINDEX: var p2 *obj.Prog // to be patched to panicindex. w := uint32(n.Type.Width) //bounded = debug['B'] || n->bounded; var n3 gc.Node var n1 gc.Node if nr.Addable != 0 { var tmp gc.Node if !gc.Isconst(nr, gc.CTINT) { gc.Tempname(&tmp, gc.Types[gc.TINT64]) } if !gc.Isconst(nl, gc.CTSTR) { agenr(nl, &n3, res) } if !gc.Isconst(nr, gc.CTINT) { cgen(nr, &tmp) regalloc(&n1, tmp.Type, nil) gmove(&tmp, &n1) } } else if nl.Addable != 0 { if !gc.Isconst(nr, gc.CTINT) { var tmp gc.Node gc.Tempname(&tmp, gc.Types[gc.TINT64]) cgen(nr, &tmp) regalloc(&n1, tmp.Type, nil) gmove(&tmp, &n1) } if !gc.Isconst(nl, gc.CTSTR) { agenr(nl, &n3, res) } } else { var tmp gc.Node gc.Tempname(&tmp, gc.Types[gc.TINT64]) cgen(nr, &tmp) nr = &tmp if !gc.Isconst(nl, gc.CTSTR) { agenr(nl, &n3, res) } regalloc(&n1, tmp.Type, nil) gins(optoas(gc.OAS, tmp.Type), &tmp, &n1) } // &a is in &n3 (allocated in res) // i is in &n1 (if not constant) // w is width // constant index if gc.Isconst(nr, gc.CTINT) { if gc.Isconst(nl, gc.CTSTR) { gc.Fatal("constant string constant index") } v := uint64(gc.Mpgetfix(nr.Val.U.Xval)) if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { if gc.Debug['B'] == 0 && !n.Bounded { n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_nel) var n4 gc.Node regalloc(&n4, n1.Type, nil) gmove(&n1, &n4) ginscon2(optoas(gc.OCMP, gc.Types[gc.TUINT64]), &n4, int64(v)) regfree(&n4) p1 := gc.Gbranch(optoas(gc.OGT, gc.Types[gc.TUINT64]), nil, +1) ginscall(gc.Panicindex, 0) gc.Patch(p1, gc.Pc) } n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_array) gmove(&n1, &n3) } if v*uint64(w) != 0 { ginscon(optoas(gc.OADD, gc.Types[gc.Tptr]), int64(v*uint64(w)), &n3) } *a = n3 break } var n2 gc.Node regalloc(&n2, gc.Types[gc.TINT64], &n1) // i gmove(&n1, &n2) regfree(&n1) var n4 gc.Node if gc.Debug['B'] == 0 && !n.Bounded { // check bounds if gc.Isconst(nl, gc.CTSTR) { gc.Nodconst(&n4, gc.Types[gc.TUINT64], int64(len(nl.Val.U.Sval))) } else if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_nel) regalloc(&n4, gc.Types[gc.TUINT64], nil) gmove(&n1, &n4) } else { if nl.Type.Bound < (1<<15)-1 { gc.Nodconst(&n4, gc.Types[gc.TUINT64], nl.Type.Bound) } else { regalloc(&n4, gc.Types[gc.TUINT64], nil) p1 := gins(ppc64.AMOVD, nil, &n4) p1.From.Type = obj.TYPE_CONST p1.From.Offset = nl.Type.Bound } } gins(optoas(gc.OCMP, gc.Types[gc.TUINT64]), &n2, &n4) if n4.Op == gc.OREGISTER { regfree(&n4) } p1 := gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT64]), nil, +1) if p2 != nil { gc.Patch(p2, gc.Pc) } ginscall(gc.Panicindex, 0) gc.Patch(p1, gc.Pc) } if gc.Isconst(nl, gc.CTSTR) { regalloc(&n3, gc.Types[gc.Tptr], res) p1 := gins(ppc64.AMOVD, nil, &n3) gc.Datastring(nl.Val.U.Sval, &p1.From) p1.From.Type = obj.TYPE_ADDR } else if gc.Isslice(nl.Type) || nl.Type.Etype == gc.TSTRING { n1 = n3 n1.Op = gc.OINDREG n1.Type = gc.Types[gc.Tptr] n1.Xoffset = int64(gc.Array_array) gmove(&n1, &n3) } if w == 0 { } else // nothing to do if w == 1 { /* w already scaled */ gins(optoas(gc.OADD, gc.Types[gc.Tptr]), &n2, &n3) /* else if(w == 2 || w == 4 || w == 8) { // TODO(minux): scale using shift } */ } else { regalloc(&n4, gc.Types[gc.TUINT64], nil) gc.Nodconst(&n1, gc.Types[gc.TUINT64], int64(w)) gmove(&n1, &n4) gins(optoas(gc.OMUL, gc.Types[gc.TUINT64]), &n4, &n2) gins(optoas(gc.OADD, gc.Types[gc.Tptr]), &n2, &n3) regfree(&n4) } *a = n3 regfree(&n2) default: regalloc(a, gc.Types[gc.Tptr], res) agen(n, a) } }
/* * generate: * call f * proc=-1 normal call but no return * proc=0 normal call * proc=1 goroutine run in new proc * proc=2 defer call save away stack * proc=3 normal call to C pointer (not Go func value) */ func ginscall(f *gc.Node, proc int) { if f.Type != nil { extra := int32(0) if proc == 1 || proc == 2 { extra = 2 * int32(gc.Widthptr) } gc.Setmaxarg(f.Type, extra) } switch proc { default: gc.Fatal("ginscall: bad proc %d", proc) case 0, // normal call -1: // normal call but no return if f.Op == gc.ONAME && f.Class == gc.PFUNC { if f == gc.Deferreturn { // Deferred calls will appear to be returning to // the CALL deferreturn(SB) that we are about to emit. // However, the stack trace code will show the line // of the instruction byte before the return PC. // To avoid that being an unrelated instruction, // insert a ppc64 NOP that we will have the right line number. // The ppc64 NOP is really or r0, r0, r0; use that description // because the NOP pseudo-instruction would be removed by // the linker. var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT], ppc64.REG_R0) gins(ppc64.AOR, ®, ®) } p := gins(ppc64.ABL, nil, f) gc.Afunclit(&p.To, f) if proc == -1 || gc.Noreturn(p) { gins(obj.AUNDEF, nil, nil) } break } var reg gc.Node gc.Nodreg(®, gc.Types[gc.Tptr], ppc64.REGCTXT) var r1 gc.Node gc.Nodreg(&r1, gc.Types[gc.Tptr], ppc64.REG_R3) gmove(f, ®) reg.Op = gc.OINDREG gmove(®, &r1) reg.Op = gc.OREGISTER ginsBL(®, &r1) case 3: // normal call of c function pointer ginsBL(nil, f) case 1, // call in new proc (go) 2: // deferred call (defer) var con gc.Node gc.Nodconst(&con, gc.Types[gc.TINT64], int64(gc.Argsize(f.Type))) var reg gc.Node gc.Nodreg(®, gc.Types[gc.TINT64], ppc64.REG_R3) var reg2 gc.Node gc.Nodreg(®2, gc.Types[gc.TINT64], ppc64.REG_R4) gmove(f, ®) gmove(&con, ®2) p := gins(ppc64.AMOVW, ®2, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = ppc64.REGSP p.To.Offset = 8 p = gins(ppc64.AMOVD, ®, nil) p.To.Type = obj.TYPE_MEM p.To.Reg = ppc64.REGSP p.To.Offset = 16 if proc == 1 { ginscall(gc.Newproc, 0) } else { if gc.Hasdefer == 0 { gc.Fatal("hasdefer=0 but has defer") } ginscall(gc.Deferproc, 0) } if proc == 2 { gc.Nodreg(®, gc.Types[gc.TINT64], ppc64.REG_R3) p := gins(ppc64.ACMP, ®, nil) p.To.Type = obj.TYPE_REG p.To.Reg = ppc64.REGZERO p = gc.Gbranch(ppc64.ABEQ, nil, +1) cgen_ret(nil) gc.Patch(p, gc.Pc) } } }
func stackcopy(n, ns *gc.Node, osrc, odst, w int64) { var noddi gc.Node gc.Nodreg(&noddi, gc.Types[gc.Tptr], x86.REG_DI) var nodsi gc.Node gc.Nodreg(&nodsi, gc.Types[gc.Tptr], x86.REG_SI) var nodl gc.Node var nodr gc.Node if n.Ullman >= ns.Ullman { gc.Agenr(n, &nodr, &nodsi) if ns.Op == gc.ONAME { gc.Gvardef(ns) } gc.Agenr(ns, &nodl, &noddi) } else { if ns.Op == gc.ONAME { gc.Gvardef(ns) } gc.Agenr(ns, &nodl, &noddi) gc.Agenr(n, &nodr, &nodsi) } if nodl.Val.U.Reg != x86.REG_DI { gmove(&nodl, &noddi) } if nodr.Val.U.Reg != x86.REG_SI { gmove(&nodr, &nodsi) } gc.Regfree(&nodl) gc.Regfree(&nodr) c := w % 8 // bytes q := w / 8 // quads var oldcx gc.Node var cx gc.Node savex(x86.REG_CX, &cx, &oldcx, nil, gc.Types[gc.TINT64]) // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && odst < osrc+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(addptr, w-1, x86.REG_SI) gconreg(addptr, w-1, x86.REG_DI) gconreg(movptr, c, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(addptr, -7, x86.REG_SI) gconreg(addptr, -7, x86.REG_DI) } else { gconreg(addptr, w-8, x86.REG_SI) gconreg(addptr, w-8, x86.REG_DI) } gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { // normal direction if q > 128 || (gc.Nacl && q >= 4) { gconreg(movptr, q, x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 14 and 128 = magic constants: see ../../runtime/asm_amd64.s p.To.Offset = 14 * (128 - q) } else if !gc.Nacl && c == 0 { // We don't need the MOVSQ side-effect of updating SI and DI, // and issuing a sequence of MOVQs directly is faster. nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG for q > 0 { gmove(&nodsi, &cx) // MOVQ x+(SI),CX gmove(&cx, &noddi) // MOVQ CX,x+(DI) nodsi.Xoffset += 8 noddi.Xoffset += 8 q-- } } else { for q > 0 { gins(x86.AMOVSQ, nil, nil) // MOVQ *(SI)+,*(DI)+ q-- } } // copy the remaining c bytes if w < 4 || c <= 1 || (odst < osrc && osrc < odst+w) { for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } else if w < 8 || c <= 4 { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT32] nodsi.Type = gc.Types[gc.TINT32] noddi.Type = gc.Types[gc.TINT32] if c > 4 { nodsi.Xoffset = 0 noddi.Xoffset = 0 gmove(&nodsi, &cx) gmove(&cx, &noddi) } nodsi.Xoffset = c - 4 noddi.Xoffset = c - 4 gmove(&nodsi, &cx) gmove(&cx, &noddi) } else { nodsi.Op = gc.OINDREG noddi.Op = gc.OINDREG cx.Type = gc.Types[gc.TINT64] nodsi.Type = gc.Types[gc.TINT64] noddi.Type = gc.Types[gc.TINT64] nodsi.Xoffset = c - 8 noddi.Xoffset = c - 8 gmove(&nodsi, &cx) gmove(&cx, &noddi) } } restx(&cx, &oldcx) }
func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { gc.Dump("\nclearfat", nl) } w := uint32(nl.Type.Width) // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := w % 4 // bytes q := w / 4 // quads var r0 gc.Node r0.Op = gc.OREGISTER r0.Reg = arm.REG_R0 var r1 gc.Node r1.Op = gc.OREGISTER r1.Reg = arm.REG_R1 var dst gc.Node gc.Regalloc(&dst, gc.Types[gc.Tptr], &r1) gc.Agen(nl, &dst) var nc gc.Node gc.Nodconst(&nc, gc.Types[gc.TUINT32], 0) var nz gc.Node gc.Regalloc(&nz, gc.Types[gc.TUINT32], &r0) gc.Cgen(&nc, &nz) if q > 128 { var end gc.Node gc.Regalloc(&end, gc.Types[gc.Tptr], nil) p := gins(arm.AMOVW, &dst, &end) p.From.Type = obj.TYPE_ADDR p.From.Offset = int64(q) * 4 p = gins(arm.AMOVW, &nz, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 4 p.Scond |= arm.C_PBIT pl := p p = gins(arm.ACMP, &dst, nil) raddr(&end, p) gc.Patch(gc.Gbranch(arm.ABNE, nil, 0), pl) gc.Regfree(&end) } else if q >= 4 && !gc.Nacl { f := gc.Sysfunc("duffzero") p := gins(obj.ADUFFZERO, nil, f) gc.Afunclit(&p.To, f) // 4 and 128 = magic constants: see ../../runtime/asm_arm.s p.To.Offset = 4 * (128 - int64(q)) } else { var p *obj.Prog for q > 0 { p = gins(arm.AMOVW, &nz, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 4 p.Scond |= arm.C_PBIT //print("1. %P\n", p); q-- } } var p *obj.Prog for c > 0 { p = gins(arm.AMOVB, &nz, &dst) p.To.Type = obj.TYPE_MEM p.To.Offset = 1 p.Scond |= arm.C_PBIT //print("2. %P\n", p); c-- } gc.Regfree(&dst) gc.Regfree(&nz) }
func clearfat(nl *gc.Node) { /* clear a fat object */ if gc.Debug['g'] != 0 { gc.Dump("\nclearfat", nl) } w := uint32(nl.Type.Width) // Avoid taking the address for simple enough types. if gc.Componentgen(nil, nl) { return } c := w % 4 // bytes q := w / 4 // quads if q < 4 { // Write sequence of MOV 0, off(base) instead of using STOSL. // The hope is that although the code will be slightly longer, // the MOVs will have no dependencies and pipeline better // than the unrolled STOSL loop. // NOTE: Must use agen, not igen, so that optimizer sees address // being taken. We are not writing on field boundaries. var n1 gc.Node gc.Regalloc(&n1, gc.Types[gc.Tptr], nil) gc.Agen(nl, &n1) n1.Op = gc.OINDREG var z gc.Node gc.Nodconst(&z, gc.Types[gc.TUINT64], 0) for { tmp14 := q q-- if tmp14 <= 0 { break } n1.Type = z.Type gins(x86.AMOVL, &z, &n1) n1.Xoffset += 4 } gc.Nodconst(&z, gc.Types[gc.TUINT8], 0) for { tmp15 := c c-- if tmp15 <= 0 { break } n1.Type = z.Type gins(x86.AMOVB, &z, &n1) n1.Xoffset++ } gc.Regfree(&n1) return } var n1 gc.Node gc.Nodreg(&n1, gc.Types[gc.Tptr], x86.REG_DI) gc.Agen(nl, &n1) gconreg(x86.AMOVL, 0, x86.REG_AX) if q > 128 || (q >= 4 && gc.Nacl) { gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFZERO, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) // 1 and 128 = magic constants: see ../../runtime/asm_386.s p.To.Offset = 1 * (128 - int64(q)) } else { for q > 0 { gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+ q-- } } for c > 0 { gins(x86.ASTOSB, nil, nil) // STOB AL,*(DI)+ c-- } }
/* * struct gen * memmove(&res, &n, w); */ func sgen(n *gc.Node, res *gc.Node, w int64) { if gc.Debug['g'] != 0 { fmt.Printf("\nsgen w=%d\n", w) gc.Dump("r", n) gc.Dump("res", res) } if n.Ullman >= gc.UINF && res.Ullman >= gc.UINF { gc.Fatal("sgen UINF") } if w < 0 || int64(int32(w)) != w { gc.Fatal("sgen copy %d", w) } if w == 0 { // evaluate side effects only. var tdst gc.Node gc.Tempname(&tdst, gc.Types[gc.Tptr]) agen(res, &tdst) agen(n, &tdst) return } // If copying .args, that's all the results, so record definition sites // for them for the liveness analysis. if res.Op == gc.ONAME && res.Sym.Name == ".args" { for l := gc.Curfn.Dcl; l != nil; l = l.Next { if l.N.Class == gc.PPARAMOUT { gc.Gvardef(l.N) } } } // Avoid taking the address for simple enough types. if componentgen(n, res) { return } // offset on the stack osrc := stkof(n) odst := stkof(res) if osrc != -1000 && odst != -1000 && (osrc == 1000 || odst == 1000) { // osrc and odst both on stack, and at least one is in // an unknown position. Could generate code to test // for forward/backward copy, but instead just copy // to a temporary location first. var tsrc gc.Node gc.Tempname(&tsrc, n.Type) sgen(n, &tsrc, w) sgen(&tsrc, res, w) return } var dst gc.Node gc.Nodreg(&dst, gc.Types[gc.Tptr], x86.REG_DI) var src gc.Node gc.Nodreg(&src, gc.Types[gc.Tptr], x86.REG_SI) var tsrc gc.Node gc.Tempname(&tsrc, gc.Types[gc.Tptr]) var tdst gc.Node gc.Tempname(&tdst, gc.Types[gc.Tptr]) if n.Addable == 0 { agen(n, &tsrc) } if res.Addable == 0 { agen(res, &tdst) } if n.Addable != 0 { agen(n, &src) } else { gmove(&tsrc, &src) } if res.Op == gc.ONAME { gc.Gvardef(res) } if res.Addable != 0 { agen(res, &dst) } else { gmove(&tdst, &dst) } c := int32(w % 4) // bytes q := int32(w / 4) // doublewords // if we are copying forward on the stack and // the src and dst overlap, then reverse direction if osrc < odst && int64(odst) < int64(osrc)+w { // reverse direction gins(x86.ASTD, nil, nil) // set direction flag if c > 0 { gconreg(x86.AADDL, w-1, x86.REG_SI) gconreg(x86.AADDL, w-1, x86.REG_DI) gconreg(x86.AMOVL, int64(c), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSB, nil, nil) // MOVB *(SI)-,*(DI)- } if q > 0 { if c > 0 { gconreg(x86.AADDL, -3, x86.REG_SI) gconreg(x86.AADDL, -3, x86.REG_DI) } else { gconreg(x86.AADDL, w-4, x86.REG_SI) gconreg(x86.AADDL, w-4, x86.REG_DI) } gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)-,*(DI)- } // we leave with the flag clear gins(x86.ACLD, nil, nil) } else { gins(x86.ACLD, nil, nil) // paranoia. TODO(rsc): remove? // normal direction if q > 128 || (q >= 4 && gc.Nacl) { gconreg(x86.AMOVL, int64(q), x86.REG_CX) gins(x86.AREP, nil, nil) // repeat gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ } else if q >= 4 { p := gins(obj.ADUFFCOPY, nil, nil) p.To.Type = obj.TYPE_ADDR p.To.Sym = gc.Linksym(gc.Pkglookup("duffcopy", gc.Runtimepkg)) // 10 and 128 = magic constants: see ../../runtime/asm_386.s p.To.Offset = 10 * (128 - int64(q)) } else if !gc.Nacl && c == 0 { var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TINT32], x86.REG_CX) // We don't need the MOVSL side-effect of updating SI and DI, // and issuing a sequence of MOVLs directly is faster. src.Op = gc.OINDREG dst.Op = gc.OINDREG for q > 0 { gmove(&src, &cx) // MOVL x+(SI),CX gmove(&cx, &dst) // MOVL CX,x+(DI) src.Xoffset += 4 dst.Xoffset += 4 q-- } } else { for q > 0 { gins(x86.AMOVSL, nil, nil) // MOVL *(SI)+,*(DI)+ q-- } } for c > 0 { gins(x86.AMOVSB, nil, nil) // MOVB *(SI)+,*(DI)+ c-- } } }