/* * substitute s for v in a * return failure to substitute */ func copysub(a *obj.Addr, v *obj.Addr, s *obj.Addr, f int) int { if f != 0 { if copyau(a, v) { if a.Type == obj.TYPE_SHIFT { if a.Offset&0xf == int64(v.Reg-arm.REG_R0) { a.Offset = a.Offset&^0xf | int64(s.Reg)&0xf } if (a.Offset&(1<<4) != 0) && (a.Offset>>8)&0xf == int64(v.Reg-arm.REG_R0) { a.Offset = a.Offset&^(0xf<<8) | (int64(s.Reg)&0xf)<<8 } } else if a.Type == obj.TYPE_REGREG || a.Type == obj.TYPE_REGREG2 { if a.Offset == int64(v.Reg) { a.Offset = int64(s.Reg) } if a.Reg == v.Reg { a.Reg = s.Reg } } else { a.Reg = s.Reg } } } return 0 }
// scratchFpMem initializes an Addr (field of a Prog) // to reference the scratchpad memory for movement between // F and G registers for FP conversions. func scratchFpMem(s *gc.SSAGenState, a *obj.Addr) { a.Type = obj.TYPE_MEM a.Name = obj.NAME_AUTO a.Node = s.ScratchFpMem a.Sym = gc.Linksym(s.ScratchFpMem.Sym) a.Reg = ppc64.REGSP }
// symbolReference parses a symbol that is known not to be a register. func (p *Parser) symbolReference(a *obj.Addr, name string, prefix rune) { // Identifier is a name. switch prefix { case 0: a.Type = obj.TYPE_MEM case '$': a.Type = obj.TYPE_ADDR case '*': a.Type = obj.TYPE_INDIR } // Weirdness with statics: Might now have "<>". isStatic := 0 // TODO: Really a boolean, but Linklookup wants a "version" integer. if p.peek() == '<' { isStatic = 1 p.next() p.get('>') } if p.peek() == '+' || p.peek() == '-' { a.Offset = int64(p.expr()) } a.Sym = obj.Linklookup(p.ctxt, name, isStatic) if p.peek() == scanner.EOF { if prefix != 0 { p.errorf("illegal addressing mode for symbol %s", name) } return } // Expect (SB) or (FP), (PC), (SB), or (SP) p.get('(') reg := p.get(scanner.Ident).String() p.get(')') p.setPseudoRegister(a, reg, isStatic != 0, prefix) }
func nacladdr(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { if p.As == ALEAL || p.As == ALEAQ { return } if a.Reg == REG_BP { ctxt.Diag("invalid address: %v", p) return } if a.Reg == REG_TLS { a.Reg = REG_BP } if a.Type == obj.TYPE_MEM && a.Name == obj.NAME_NONE { switch a.Reg { // all ok case REG_BP, REG_SP, REG_R15: break default: if a.Index != REG_NONE { ctxt.Diag("invalid address %v", p) } a.Index = a.Reg if a.Index != REG_NONE { a.Scale = 1 } a.Reg = REG_R15 } } }
func datagostring(sval string, a *obj.Addr) { symhdr, _ := stringsym(sval) a.Type = obj.TYPE_MEM a.Name = obj.NAME_EXTERN a.Sym = symhdr a.Offset = 0 }
// copysub substitute s for v in a. // copysub returns true on failure to substitute. TODO(dfc) reverse this logic, copysub should return false on failure func copysub(a *obj.Addr, v *obj.Addr, s *obj.Addr, f bool) bool { if copyas(a, v) { if s.Reg >= x86.REG_AX && s.Reg <= x86.REG_R15 || s.Reg >= x86.REG_X0 && s.Reg <= x86.REG_X0+15 { if f { a.Reg = s.Reg } } return false } if regtyp(v) { if a.Type == obj.TYPE_MEM && a.Reg == v.Reg { if (s.Reg == x86.REG_BP || s.Reg == x86.REG_R13) && a.Index != x86.REG_NONE { return true /* can't use BP-base with index */ } if f { a.Reg = s.Reg } } if a.Index == v.Reg { if f { a.Index = s.Reg } } } return false }
// registerList parses an ARM register list expression, a list of registers in []. // There may be comma-separated ranges or individual registers, as in // [R1,R3-R5]. Only R0 through R15 may appear. // The opening bracket has been consumed. func (p *Parser) registerList(a *obj.Addr) { // One range per loop. var bits uint16 for { tok := p.next() if tok.ScanToken == ']' { break } lo := p.registerNumber(tok.String()) hi := lo if p.peek() == '-' { p.next() hi = p.registerNumber(p.next().String()) } if hi < lo { lo, hi = hi, lo } for lo <= hi { if bits&(1<<lo) != 0 { p.errorf("register R%d already in list", lo) } bits |= 1 << lo lo++ } if p.peek() != ']' { p.get(',') } } a.Type = obj.TYPE_REGLIST a.Offset = int64(bits) }
func Datastring(s string, a *obj.Addr) { _, symdata := stringsym(s) a.Type = obj.TYPE_MEM a.Name = obj.NAME_EXTERN a.Sym = symdata a.Offset = 0 a.Etype = uint8(Simtype[TINT]) }
// copysub replaces v with s in a if f!=0 or indicates it if could if f==0. // Returns 1 on failure to substitute (it always succeeds on mips). func copysub(a *obj.Addr, v *obj.Addr, s *obj.Addr, f int) int { if f != 0 { if copyau(a, v) { a.Reg = s.Reg } } return 0 }
// setPseudoRegister sets the NAME field of addr for a pseudo-register reference such as (SB). func (p *Parser) setPseudoRegister(addr *obj.Addr, reg string, isStatic bool, prefix rune) { if addr.Reg != 0 { p.errorf("internal error: reg %s already set in pseudo", reg) } switch reg { case "FP": addr.Name = obj.NAME_PARAM case "PC": if prefix != 0 { p.errorf("illegal addressing mode for PC") } addr.Type = obj.TYPE_BRANCH // We set the type and leave NAME untouched. See asmJump. case "SB": addr.Name = obj.NAME_EXTERN if isStatic { addr.Name = obj.NAME_STATIC } case "SP": addr.Name = obj.NAME_AUTO // The pseudo-stack. default: p.errorf("expected pseudo-register; found %s", reg) } if prefix == '$' { addr.Type = obj.TYPE_ADDR } }
// registerList parses an ARM register list expression, a list of registers in []. // There may be comma-separated ranges or individual registers, as in // [R1,R3-R5]. Only R0 through R15 may appear. // The opening bracket has been consumed. func (p *Parser) registerList(a *obj.Addr) { // One range per loop. const maxReg = 16 var bits uint16 ListLoop: for { tok := p.next() switch tok.ScanToken { case ']': break ListLoop case scanner.EOF: p.errorf("missing ']' in register list") return } // Parse the upper and lower bounds. lo := p.registerNumber(tok.String()) hi := lo if p.peek() == '-' { p.next() hi = p.registerNumber(p.next().String()) } if hi < lo { lo, hi = hi, lo } // Check there are no duplicates in the register list. for i := 0; lo <= hi && i < maxReg; i++ { if bits&(1<<lo) != 0 { p.errorf("register R%d already in list", lo) } bits |= 1 << lo lo++ } if p.peek() != ']' { p.get(',') } } a.Type = obj.TYPE_REGLIST a.Offset = int64(bits) }
func Datastring(s string, a *obj.Addr) { _, symdata := stringsym(s) a.Type = obj.TYPE_MEM a.Name = obj.NAME_EXTERN a.Sym = Linksym(symdata) a.Node = symdata.Def a.Offset = 0 a.Etype = Simtype[TINT] }
func datagostring(sval string, a *obj.Addr) { symhdr, _ := stringsym(sval) a.Type = obj.TYPE_MEM a.Name = obj.NAME_EXTERN a.Sym = Linksym(symhdr) a.Node = symhdr.Def a.Offset = 0 a.Etype = TSTRING }
func Datastring(s string, a *obj.Addr) { sym := stringsym(s) a.Type = obj.TYPE_MEM a.Name = obj.NAME_EXTERN a.Sym = Linksym(sym) a.Node = sym.Def a.Offset = int64(Widthptr) + int64(Widthint) // skip header a.Etype = Simtype[TINT] }
/* * substitute s for v in a * return failure to substitute */ func copysub(a *obj.Addr, v *obj.Addr, s *obj.Addr, f int) int { if copyas(a, v) { reg := int(s.Reg) if reg >= x86.REG_AX && reg <= x86.REG_DI || reg >= x86.REG_X0 && reg <= x86.REG_X7 { if f != 0 { a.Reg = int16(reg) } } return 0 } if regtyp(v) { reg := int(v.Reg) if a.Type == obj.TYPE_MEM && int(a.Reg) == reg { if (s.Reg == x86.REG_BP) && a.Index != obj.TYPE_NONE { return 1 /* can't use BP-base with index */ } if f != 0 { a.Reg = s.Reg } } // return 0; if int(a.Index) == reg { if f != 0 { a.Index = s.Reg } return 0 } return 0 } return 0 }
// registerList parses an ARM register list expression, a list of registers in []. // There may be comma-separated ranges or individual registers, as in // [R1,R3-R5]. Only R0 through R15 may appear. // The opening bracket has been consumed. func (p *Parser) registerList(a *obj.Addr) { // One range per loop. var bits uint16 ListLoop: for { tok := p.next() switch tok.ScanToken { case ']': break ListLoop case scanner.EOF: p.errorf("missing ']' in register list") return } lo := p.registerNumber(tok.String()) hi := lo if p.peek() == '-' { p.next() hi = p.registerNumber(p.next().String()) } if hi < lo { lo, hi = hi, lo } for lo <= hi { if bits&(1<<lo) != 0 { p.errorf("register R%d already in list", lo) } bits |= 1 << lo lo++ } if p.peek() != ']' { p.get(',') } } a.Type = obj.TYPE_REGLIST a.Offset = int64(bits) }
func addreg(a *obj.Addr, rn int) { a.Sym = nil a.Node = nil a.Offset = 0 a.Type = obj.TYPE_REG a.Reg = int16(rn) a.Name = 0 Ostats.Ncvtreg++ }
func indir_cx(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { a.Type = obj.TYPE_MEM a.Reg = REG_R15 a.Index = REG_CX a.Scale = 1 return } a.Type = obj.TYPE_MEM a.Reg = REG_CX }
// Naddr rewrites a to refer to n. // It assumes that a is zeroed on entry. func Naddr(a *obj.Addr, n *Node) { if n == nil { return } if n.Op != ONAME { Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", n.Op, Ctxt.Dconv(a)) } a.Offset = n.Xoffset s := n.Sym a.Node = n.Orig if s == nil { Fatalf("naddr: nil sym %v", n) } if n.Name.Method && n.Type != nil && n.Type.Sym != nil && n.Type.Sym.Pkg != nil { Fatalf("naddr: weird method %v", n) } a.Type = obj.TYPE_MEM switch n.Class { default: Fatalf("naddr: ONAME class %v %d\n", n.Sym, n.Class) case PEXTERN, PFUNC: a.Name = obj.NAME_EXTERN case PAUTO: a.Name = obj.NAME_AUTO case PPARAM, PPARAMOUT: a.Name = obj.NAME_PARAM } a.Sym = Linksym(s) }
/* * ASLL x,y,w * .. (not use w, not set x y w) * AXXX w,a,b (a != w) * .. (not use w) * (set w) * ----------- changed to * .. * AXXX (x<<y),a,b * .. */ func shiftprop(r *gc.Flow) bool { p := r.Prog if p.To.Type != obj.TYPE_REG { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: result not reg; FAILURE\n") } return false } n := p.To.Reg var a obj.Addr if p.Reg != 0 && p.Reg != p.To.Reg { a.Type = obj.TYPE_REG a.Reg = p.Reg } if gc.Debug['P'] != 0 { fmt.Printf("shiftprop\n%v", p) } r1 := r var p1 *obj.Prog for { /* find first use of shift result; abort if shift operands or result are changed */ r1 = gc.Uniqs(r1) if r1 == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tbranch; FAILURE\n") } return false } if gc.Uniqp(r1) == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tmerge; FAILURE\n") } return false } p1 = r1.Prog if gc.Debug['P'] != 0 { fmt.Printf("\n%v", p1) } switch copyu(p1, &p.To, nil) { case 0: /* not used or set */ if (p.From.Type == obj.TYPE_REG && copyu(p1, &p.From, nil) > 1) || (a.Type == obj.TYPE_REG && copyu(p1, &a, nil) > 1) { if gc.Debug['P'] != 0 { fmt.Printf("\targs modified; FAILURE\n") } return false } continue case 3: /* set, not used */ { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: noref; FAILURE\n") } return false } } break } /* check whether substitution can be done */ switch p1.As { default: if gc.Debug['P'] != 0 { fmt.Printf("\tnon-dpi; FAILURE\n") } return false case arm.AAND, arm.AEOR, arm.AADD, arm.AADC, arm.AORR, arm.ASUB, arm.ASBC, arm.ARSB, arm.ARSC: if p1.Reg == n || (p1.Reg == 0 && p1.To.Type == obj.TYPE_REG && p1.To.Reg == n) { if p1.From.Type != obj.TYPE_REG { if gc.Debug['P'] != 0 { fmt.Printf("\tcan't swap; FAILURE\n") } return false } p1.Reg = p1.From.Reg p1.From.Reg = n switch p1.As { case arm.ASUB: p1.As = arm.ARSB case arm.ARSB: p1.As = arm.ASUB case arm.ASBC: p1.As = arm.ARSC case arm.ARSC: p1.As = arm.ASBC } if gc.Debug['P'] != 0 { fmt.Printf("\t=>%v", p1) } } fallthrough case arm.ABIC, arm.ATST, arm.ACMP, arm.ACMN: if p1.Reg == n { if gc.Debug['P'] != 0 { fmt.Printf("\tcan't swap; FAILURE\n") } return false } if p1.Reg == 0 && p1.To.Reg == n { if gc.Debug['P'] != 0 { fmt.Printf("\tshift result used twice; FAILURE\n") } return false } // case AMVN: if p1.From.Type == obj.TYPE_SHIFT { if gc.Debug['P'] != 0 { fmt.Printf("\tshift result used in shift; FAILURE\n") } return false } if p1.From.Type != obj.TYPE_REG || p1.From.Reg != n { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: where is it used?; FAILURE\n") } return false } } /* check whether shift result is used subsequently */ p2 := p1 if p1.To.Reg != n { var p1 *obj.Prog for { r1 = gc.Uniqs(r1) if r1 == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tinconclusive; FAILURE\n") } return false } p1 = r1.Prog if gc.Debug['P'] != 0 { fmt.Printf("\n%v", p1) } switch copyu(p1, &p.To, nil) { case 0: /* not used or set */ continue case 3: /* set, not used */ break default: /* used */ if gc.Debug['P'] != 0 { fmt.Printf("\treused; FAILURE\n") } return false } break } } /* make the substitution */ p2.From.Reg = 0 o := p.Reg if o == 0 { o = p.To.Reg } o &= 15 switch p.From.Type { case obj.TYPE_CONST: o |= int16(p.From.Offset&0x1f) << 7 case obj.TYPE_REG: o |= 1<<4 | (p.From.Reg&15)<<8 } switch p.As { case arm.ASLL: o |= 0 << 5 case arm.ASRL: o |= 1 << 5 case arm.ASRA: o |= 2 << 5 } p2.From = obj.Addr{} p2.From.Type = obj.TYPE_SHIFT p2.From.Offset = int64(o) if gc.Debug['P'] != 0 { fmt.Printf("\t=>%v\tSUCCEED\n", p2) } return true }
// copysub replaces v with s in a if f==true or indicates it if could if f==false. // Returns true on failure to substitute (it always succeeds on ppc64). // TODO(dfc) remove unused return value and callers where f=false. func copysub(a *obj.Addr, v *obj.Addr, s *obj.Addr, f bool) bool { if f && copyau(a, v) { a.Reg = s.Reg } return false }
func mkvar(f *Flow, a *obj.Addr) Bits { // mark registers used if a.Type == obj.TYPE_NONE { return zbits } r := f.Data.(*Reg) r.use1.b[0] |= Thearch.Doregbits(int(a.Index)) // TODO: Use RtoB var n int switch a.Type { default: regu := Thearch.Doregbits(int(a.Reg)) | Thearch.RtoB(int(a.Reg)) // TODO: Use RtoB if regu == 0 { return zbits } bit := zbits bit.b[0] = regu return bit // TODO(rsc): Remove special case here. case obj.TYPE_ADDR: var bit Bits if Thearch.Thechar == '0' || Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9' { goto memcase } a.Type = obj.TYPE_MEM bit = mkvar(f, a) setaddrs(bit) a.Type = obj.TYPE_ADDR Ostats.Naddr++ return zbits memcase: fallthrough case obj.TYPE_MEM: if r != nil { r.use1.b[0] |= Thearch.RtoB(int(a.Reg)) } /* NOTE: 5g did if(r->f.prog->scond & (C_PBIT|C_WBIT)) r->set.b[0] |= RtoB(a->reg); */ switch a.Name { default: // Note: This case handles NAME_EXTERN and NAME_STATIC. // We treat these as requiring eager writes to memory, due to // the possibility of a fault handler looking at them, so there is // not much point in registerizing the loads. // If we later choose the set of candidate variables from a // larger list, these cases could be deprioritized instead of // removed entirely. return zbits case obj.NAME_PARAM, obj.NAME_AUTO: n = int(a.Name) } } node, _ := a.Node.(*Node) if node == nil || node.Op != ONAME || node.Orig == nil { return zbits } node = node.Orig if node.Orig != node { Fatalf("%v: bad node", Ctxt.Dconv(a)) } if node.Sym == nil || node.Sym.Name[0] == '.' { return zbits } et := EType(a.Etype) o := a.Offset w := a.Width if w < 0 { Fatalf("bad width %d for %v", w, Ctxt.Dconv(a)) } flag := 0 var v *Var for i := 0; i < nvar; i++ { v = &vars[i] if v.node == node && int(v.name) == n { if v.offset == o { if v.etype == et { if int64(v.width) == w { // TODO(rsc): Remove special case for arm here. if flag == 0 || Thearch.Thechar != '5' { return blsh(uint(i)) } } } } // if they overlap, disable both if overlap_reg(v.offset, v.width, o, int(w)) { // print("disable overlap %s %d %d %d %d, %E != %E\n", s->name, v->offset, v->width, o, w, v->etype, et); v.addr = 1 flag = 1 } } } switch et { case 0, TFUNC: return zbits } if nvar >= NVAR { if Debug['w'] > 1 && node != nil { Fatalf("variable not optimized: %v", Nconv(node, obj.FmtSharp)) } if Debug['v'] > 0 { Warn("variable not optimized: %v", Nconv(node, obj.FmtSharp)) } // If we're not tracking a word in a variable, mark the rest as // having its address taken, so that we keep the whole thing // live at all calls. otherwise we might optimize away part of // a variable but not all of it. var v *Var for i := 0; i < nvar; i++ { v = &vars[i] if v.node == node { v.addr = 1 } } return zbits } i := nvar nvar++ v = &vars[i] v.id = i v.offset = o v.name = int8(n) v.etype = et v.width = int(w) v.addr = int8(flag) // funny punning v.node = node // node->opt is the head of a linked list // of Vars within the given Node, so that // we can start at a Var and find all the other // Vars in the same Go variable. v.nextinnode, _ = node.Opt().(*Var) node.SetOpt(v) bit := blsh(uint(i)) if n == obj.NAME_EXTERN || n == obj.NAME_STATIC { for z := 0; z < BITS; z++ { externs.b[z] |= bit.b[z] } } if n == obj.NAME_PARAM { for z := 0; z < BITS; z++ { params.b[z] |= bit.b[z] } } if node.Class == PPARAM { for z := 0; z < BITS; z++ { ivar.b[z] |= bit.b[z] } } if node.Class == PPARAMOUT { for z := 0; z < BITS; z++ { ovar.b[z] |= bit.b[z] } } // Treat values with their address taken as live at calls, // because the garbage collector's liveness analysis in plive.go does. // These must be consistent or else we will elide stores and the garbage // collector will see uninitialized data. // The typical case where our own analysis is out of sync is when the // node appears to have its address taken but that code doesn't actually // get generated and therefore doesn't show up as an address being // taken when we analyze the instruction stream. // One instance of this case is when a closure uses the same name as // an outer variable for one of its own variables declared with :=. // The parser flags the outer variable as possibly shared, and therefore // sets addrtaken, even though it ends up not being actually shared. // If we were better about _ elision, _ = &x would suffice too. // The broader := in a closure problem is mentioned in a comment in // closure.go:/^typecheckclosure and dcl.go:/^oldname. if node.Addrtaken { v.addr = 1 } // Disable registerization for globals, because: // (1) we might panic at any time and we want the recovery code // to see the latest values (issue 1304). // (2) we don't know what pointers might point at them and we want // loads via those pointers to see updated values and vice versa (issue 7995). // // Disable registerization for results if using defer, because the deferred func // might recover and return, causing the current values to be used. if node.Class == PEXTERN || (hasdefer && node.Class == PPARAMOUT) { v.addr = 1 } if Debug['R'] != 0 { fmt.Printf("bit=%2d et=%v w=%d+%d %v %v flag=%d\n", i, Econv(et), o, w, Nconv(node, obj.FmtSharp), Ctxt.Dconv(a), v.addr) } Ostats.Nvar++ return bit }
// registerIndirect parses the general form of a register indirection. // It is can be (R1), (R2*scale), or (R1)(R2*scale) where R1 may be a simple // register or register pair R:R or (R, R) or (R+R). // Or it might be a pseudo-indirection like (FP). // We are sitting on the opening parenthesis. func (p *Parser) registerIndirect(a *obj.Addr, prefix rune) { p.get('(') tok := p.next() name := tok.String() r1, r2, scale, ok := p.register(name, 0) if !ok { p.errorf("indirect through non-register %s", tok) } p.get(')') a.Type = obj.TYPE_MEM if r1 < 0 { // Pseudo-register reference. if r2 != 0 { p.errorf("cannot use pseudo-register in pair") return } // For SB, SP, and FP, there must be a name here. 0(FP) is not legal. if name != "PC" && a.Name == obj.NAME_NONE { p.errorf("cannot reference %s without a symbol", name) } p.setPseudoRegister(a, name, false, prefix) return } a.Reg = r1 if r2 != 0 { // TODO: Consistency in the encoding would be nice here. if p.arch.Thechar == '5' || p.arch.Thechar == '7' { // Special form // ARM: destination register pair (R1, R2). // ARM64: register pair (R1, R2) for LDP/STP. if prefix != 0 || scale != 0 { p.errorf("illegal address mode for register pair") return } a.Type = obj.TYPE_REGREG a.Offset = int64(r2) // Nothing may follow return } if p.arch.Thechar == '9' { // Special form for PPC64: (R1+R2); alias for (R1)(R2*1). if prefix != 0 || scale != 0 { p.errorf("illegal address mode for register+register") return } a.Type = obj.TYPE_MEM a.Scale = 1 a.Index = r2 // Nothing may follow. return } } if r2 != 0 { p.errorf("indirect through register pair") } if prefix == '$' { a.Type = obj.TYPE_ADDR } if r1 == arch.RPC && prefix != 0 { p.errorf("illegal addressing mode for PC") } if scale == 0 && p.peek() == '(' { // General form (R)(R*scale). p.next() tok := p.next() r1, r2, scale, ok = p.register(tok.String(), 0) if !ok { p.errorf("indirect through non-register %s", tok) } if r2 != 0 { p.errorf("unimplemented two-register form") } a.Index = r1 a.Scale = int16(scale) p.get(')') } else if scale != 0 { // First (R) was missing, all we have is (R*scale). a.Reg = 0 a.Index = r1 a.Scale = int16(scale) } }
func Addrconst(a *obj.Addr, v int64) { a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = v }
/* * generate code to compute address of n, * a reference to a (perhaps nested) field inside * an array or struct. * return 0 on failure, 1 on success. * on success, leaves usable address in a. * * caller is responsible for calling sudoclean * after successful sudoaddable, * to release the register used for a. */ func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool { if n.Type == nil { return false } *a = obj.Addr{} switch n.Op { case gc.OLITERAL: if !gc.Isconst(n, gc.CTINT) { break } v := n.Int() if v >= 32000 || v <= -32000 { break } switch as { default: return false case arm.AADD, arm.ASUB, arm.AAND, arm.AORR, arm.AEOR, arm.AMOVB, arm.AMOVBS, arm.AMOVBU, arm.AMOVH, arm.AMOVHS, arm.AMOVHU, arm.AMOVW: break } cleani += 2 reg := &clean[cleani-1] reg1 := &clean[cleani-2] reg.Op = gc.OEMPTY reg1.Op = gc.OEMPTY gc.Naddr(a, n) return true case gc.ODOT, gc.ODOTPTR: cleani += 2 reg := &clean[cleani-1] reg1 := &clean[cleani-2] reg.Op = gc.OEMPTY reg1.Op = gc.OEMPTY var nn *gc.Node var oary [10]int64 o := gc.Dotoffset(n, oary[:], &nn) if nn == nil { sudoclean() return false } if nn.Addable && o == 1 && oary[0] >= 0 { // directly addressable set of DOTs n1 := *nn n1.Type = n.Type n1.Xoffset += oary[0] gc.Naddr(a, &n1) return true } gc.Regalloc(reg, gc.Types[gc.Tptr], nil) n1 := *reg n1.Op = gc.OINDREG if oary[0] >= 0 { gc.Agen(nn, reg) n1.Xoffset = oary[0] } else { gc.Cgen(nn, reg) gc.Cgen_checknil(reg) n1.Xoffset = -(oary[0] + 1) } for i := 1; i < o; i++ { if oary[i] >= 0 { gc.Fatal("can't happen") } gins(arm.AMOVW, &n1, reg) gc.Cgen_checknil(reg) n1.Xoffset = -(oary[i] + 1) } a.Type = obj.TYPE_NONE a.Name = obj.NAME_NONE n1.Type = n.Type gc.Naddr(a, &n1) return true case gc.OINDEX: return false } return false }
// operand parses a general operand and stores the result in *a. func (p *Parser) operand(a *obj.Addr) bool { //fmt.Printf("Operand: %v\n", p.input) if len(p.input) == 0 { p.errorf("empty operand: cannot happen") return false } // General address (with a few exceptions) looks like // $sym±offset(SB)(reg)(index*scale) // Exceptions are: // // R1 // offset // $offset // Every piece is optional, so we scan left to right and what // we discover tells us where we are. // Prefix: $. var prefix rune switch tok := p.peek(); tok { case '$', '*': prefix = rune(tok) p.next() } // Symbol: sym±offset(SB) tok := p.next() name := tok.String() if tok.ScanToken == scanner.Ident && !p.atStartOfRegister(name) { // We have a symbol. Parse $sym±offset(symkind) p.symbolReference(a, name, prefix) // fmt.Printf("SYM %s\n", obj.Dconv(&emptyProg, 0, a)) if p.peek() == scanner.EOF { return true } } // Special register list syntax for arm: [R1,R3-R7] if tok.ScanToken == '[' { if prefix != 0 { p.errorf("illegal use of register list") } p.registerList(a) p.expect(scanner.EOF) return true } // Register: R1 if tok.ScanToken == scanner.Ident && p.atStartOfRegister(name) { if p.atRegisterShift() { // ARM shifted register such as R1<<R2 or R1>>2. a.Type = obj.TYPE_SHIFT a.Offset = p.registerShift(tok.String(), prefix) if p.peek() == '(' { // Can only be a literal register here. p.next() tok := p.next() name := tok.String() if !p.atStartOfRegister(name) { p.errorf("expected register; found %s", name) } a.Reg, _ = p.registerReference(name) p.get(')') } } else if r1, r2, scale, ok := p.register(tok.String(), prefix); ok { if scale != 0 { p.errorf("expected simple register reference") } a.Type = obj.TYPE_REG a.Reg = r1 if r2 != 0 { // Form is R1:R2. It is on RHS and the second register // needs to go into the LHS. panic("cannot happen (Addr.Reg2)") } } // fmt.Printf("REG %s\n", obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } // Constant. haveConstant := false switch tok.ScanToken { case scanner.Int, scanner.Float, scanner.String, scanner.Char, '+', '-', '~': haveConstant = true case '(': // Could be parenthesized expression or (R). rname := p.next().String() p.back() haveConstant = !p.atStartOfRegister(rname) if !haveConstant { p.back() // Put back the '('. } } if haveConstant { p.back() if p.have(scanner.Float) { if prefix != '$' { p.errorf("floating-point constant must be an immediate") } a.Type = obj.TYPE_FCONST a.Val = p.floatExpr() // fmt.Printf("FCONST %s\n", obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } if p.have(scanner.String) { if prefix != '$' { p.errorf("string constant must be an immediate") } str, err := strconv.Unquote(p.get(scanner.String).String()) if err != nil { p.errorf("string parse error: %s", err) } a.Type = obj.TYPE_SCONST a.Val = str // fmt.Printf("SCONST %s\n", obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } a.Offset = int64(p.expr()) if p.peek() != '(' { switch prefix { case '$': a.Type = obj.TYPE_CONST case '*': a.Type = obj.TYPE_INDIR // Can appear but is illegal, will be rejected by the linker. default: a.Type = obj.TYPE_MEM } // fmt.Printf("CONST %d %s\n", a.Offset, obj.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true } // fmt.Printf("offset %d \n", a.Offset) } // Register indirection: (reg) or (index*scale). We are on the opening paren. p.registerIndirect(a, prefix) // fmt.Printf("DONE %s\n", p.arch.Dconv(&emptyProg, 0, a)) p.expect(scanner.EOF) return true }
func (yyrcvr *yyParserImpl) Parse(yylex yyLexer) int { var yyn int var yylval yySymType var yyVAL yySymType var yyDollar []yySymType yyS := make([]yySymType, yyMaxDepth) Nerrs := 0 /* number of errors */ Errflag := 0 /* error recovery flag */ yystate := 0 yychar := -1 yytoken := -1 // yychar translated into internal numbering yyrcvr.lookahead = func() int { return yychar } defer func() { // Make sure we report no lookahead when not parsing. yystate = -1 yychar = -1 yytoken = -1 }() yyp := -1 goto yystack ret0: return 0 ret1: return 1 yystack: /* put a state and value onto the stack */ if yyDebug >= 4 { __yyfmt__.Printf("char %v in %v\n", yyTokname(yytoken), yyStatname(yystate)) } yyp++ if yyp >= len(yyS) { nyys := make([]yySymType, len(yyS)*2) copy(nyys, yyS) yyS = nyys } yyS[yyp] = yyVAL yyS[yyp].yys = yystate yynewstate: yyn = yyPact[yystate] if yyn <= yyFlag { goto yydefault /* simple state */ } if yychar < 0 { yychar, yytoken = yylex1(yylex, &yylval) } yyn += yytoken if yyn < 0 || yyn >= yyLast { goto yydefault } yyn = yyAct[yyn] if yyChk[yyn] == yytoken { /* valid shift */ yychar = -1 yytoken = -1 yyVAL = yylval yystate = yyn if Errflag > 0 { Errflag-- } goto yystack } yydefault: /* default state action */ yyn = yyDef[yystate] if yyn == -2 { if yychar < 0 { yychar, yytoken = yylex1(yylex, &yylval) } /* look through exception table */ xi := 0 for { if yyExca[xi+0] == -1 && yyExca[xi+1] == yystate { break } xi += 2 } for xi += 2; ; xi += 2 { yyn = yyExca[xi+0] if yyn < 0 || yyn == yytoken { break } } yyn = yyExca[xi+1] if yyn < 0 { goto ret0 } } if yyn == 0 { /* error ... attempt to resume parsing */ switch Errflag { case 0: /* brand new error */ yylex.Error(yyErrorMessage(yystate, yytoken)) Nerrs++ if yyDebug >= 1 { __yyfmt__.Printf("%s", yyStatname(yystate)) __yyfmt__.Printf(" saw %s\n", yyTokname(yytoken)) } fallthrough case 1, 2: /* incompletely recovered error ... try again */ Errflag = 3 /* find a state where "error" is a legal shift action */ for yyp >= 0 { yyn = yyPact[yyS[yyp].yys] + yyErrCode if yyn >= 0 && yyn < yyLast { yystate = yyAct[yyn] /* simulate a shift of "error" */ if yyChk[yystate] == yyErrCode { goto yystack } } /* the current p has no shift on "error", pop stack */ if yyDebug >= 2 { __yyfmt__.Printf("error recovery pops state %d\n", yyS[yyp].yys) } yyp-- } /* there is no state on the stack with an error shift ... abort */ goto ret1 case 3: /* no shift yet; clobber input char */ if yyDebug >= 2 { __yyfmt__.Printf("error recovery discards %s\n", yyTokname(yytoken)) } if yytoken == yyEofCode { goto ret1 } yychar = -1 yytoken = -1 goto yynewstate /* try again in the same state */ } } /* reduction by production yyn */ if yyDebug >= 2 { __yyfmt__.Printf("reduce %v in:\n\t%v\n", yyn, yyStatname(yystate)) } yynt := yyn yypt := yyp _ = yypt // guard against "declared and not used" yyp -= yyR2[yyn] // yyp is now the index of $0. Perform the default action. Iff the // reduced production is ε, $1 is possibly out of range. if yyp+1 >= len(yyS) { nyys := make([]yySymType, len(yyS)*2) copy(nyys, yyS) yyS = nyys } yyVAL = yyS[yyp+1] /* consult goto table to find next state */ yyn = yyR1[yyn] yyg := yyPgo[yyn] yyj := yyg + yyS[yyp].yys + 1 if yyj >= yyLast { yystate = yyAct[yyg] } else { yystate = yyAct[yyj] if yyChk[yystate] != -yyn { yystate = yyAct[yyg] } } // dummy call; replaced with literal code switch yynt { case 2: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:73 { stmtline = asm.Lineno } case 4: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:80 { yyDollar[1].sym = asm.LabelLookup(yyDollar[1].sym) if yyDollar[1].sym.Type == LLAB && yyDollar[1].sym.Value != int64(asm.PC) { yyerror("redeclaration of %s", yyDollar[1].sym.Labelname) } yyDollar[1].sym.Type = LLAB yyDollar[1].sym.Value = int64(asm.PC) } case 6: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:90 { yyDollar[1].sym.Type = LVAR yyDollar[1].sym.Value = int64(yyDollar[3].lval) } case 7: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:95 { if yyDollar[1].sym.Value != int64(yyDollar[3].lval) { yyerror("redeclaration of %s", yyDollar[1].sym.Name) } yyDollar[1].sym.Value = int64(yyDollar[3].lval) } case 11: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:110 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &yyDollar[7].addr) } case 12: yyDollar = yyS[yypt-6 : yypt+1] //line a.y:114 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &nullgen) } case 13: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:118 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr) } case 14: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:125 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr) } case 15: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:132 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr) } case 16: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:139 { outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &yyDollar[4].addr) } case 17: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:143 { outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &yyDollar[4].addr) } case 18: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:150 { outcode(yyDollar[1].lval, Always, &nullgen, 0, &yyDollar[3].addr) } case 19: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:157 { outcode(yyDollar[1].lval, Always, &nullgen, 0, &yyDollar[3].addr) } case 20: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:164 { outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &yyDollar[4].addr) } case 21: yyDollar = yyS[yypt-6 : yypt+1] //line a.y:171 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &nullgen) } case 22: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:178 { var g obj.Addr g = nullgen g.Type = obj.TYPE_REGLIST g.Offset = int64(yyDollar[6].lval) outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &g) } case 23: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:187 { var g obj.Addr g = nullgen g.Type = obj.TYPE_REGLIST g.Offset = int64(yyDollar[4].lval) outcode(yyDollar[1].lval, yyDollar[2].lval, &g, 0, &yyDollar[7].addr) } case 24: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:199 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[5].addr, int32(yyDollar[3].addr.Reg), &yyDollar[7].addr) } case 25: yyDollar = yyS[yypt-6 : yypt+1] //line a.y:203 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[5].addr, int32(yyDollar[3].addr.Reg), &yyDollar[3].addr) } case 26: yyDollar = yyS[yypt-6 : yypt+1] //line a.y:207 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[4].addr, int32(yyDollar[6].addr.Reg), &yyDollar[6].addr) } case 27: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:214 { outcode(yyDollar[1].lval, yyDollar[2].lval, &nullgen, 0, &nullgen) } case 28: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:221 { asm.Settext(yyDollar[2].addr.Sym) outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[5].addr) if asm.Pass > 1 { lastpc.From3 = new(obj.Addr) } } case 29: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:229 { asm.Settext(yyDollar[2].addr.Sym) outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[7].addr) if asm.Pass > 1 { lastpc.From3 = new(obj.Addr) lastpc.From3.Type = obj.TYPE_CONST lastpc.From3.Offset = int64(yyDollar[4].lval) } } case 30: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:242 { asm.Settext(yyDollar[2].addr.Sym) outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[4].addr) if asm.Pass > 1 { lastpc.From3 = new(obj.Addr) } } case 31: yyDollar = yyS[yypt-6 : yypt+1] //line a.y:250 { asm.Settext(yyDollar[2].addr.Sym) outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[6].addr) if asm.Pass > 1 { lastpc.From3 = new(obj.Addr) lastpc.From3.Type = obj.TYPE_CONST lastpc.From3.Offset = int64(yyDollar[4].lval) } } case 32: yyDollar = yyS[yypt-6 : yypt+1] //line a.y:264 { outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[6].addr) if asm.Pass > 1 { lastpc.From3 = new(obj.Addr) lastpc.From3.Type = obj.TYPE_CONST lastpc.From3.Offset = int64(yyDollar[4].lval) } } case 33: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:276 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &nullgen) } case 34: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:283 { outcode(yyDollar[1].lval, Always, &nullgen, 0, &yyDollar[3].addr) } case 35: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:290 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr) } case 36: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:294 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, 0, &yyDollar[5].addr) } case 37: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:298 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, yyDollar[5].lval, &yyDollar[7].addr) } case 38: yyDollar = yyS[yypt-6 : yypt+1] //line a.y:302 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, int32(yyDollar[5].addr.Reg), &nullgen) } case 39: yyDollar = yyS[yypt-12 : yypt+1] //line a.y:309 { var g obj.Addr g = nullgen g.Type = obj.TYPE_CONST g.Offset = int64( (0xe << 24) | /* opcode */ (yyDollar[1].lval << 20) | /* MCR/MRC */ ((yyDollar[2].lval ^ C_SCOND_XOR) << 28) | /* scond */ ((yyDollar[3].lval & 15) << 8) | /* coprocessor number */ ((yyDollar[5].lval & 7) << 21) | /* coprocessor operation */ ((yyDollar[7].lval & 15) << 12) | /* arm register */ ((yyDollar[9].lval & 15) << 16) | /* Crn */ ((yyDollar[11].lval & 15) << 0) | /* Crm */ ((yyDollar[12].lval & 7) << 5) | /* coprocessor information */ (1 << 4)) /* must be set */ outcode(AMRC, Always, &nullgen, 0, &g) } case 40: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:321 { outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, int32(yyDollar[5].addr.Reg), &yyDollar[7].addr) } case 41: yyDollar = yyS[yypt-9 : yypt+1] //line a.y:329 { yyDollar[7].addr.Type = obj.TYPE_REGREG2 yyDollar[7].addr.Offset = int64(yyDollar[9].lval) outcode(yyDollar[1].lval, yyDollar[2].lval, &yyDollar[3].addr, int32(yyDollar[5].addr.Reg), &yyDollar[7].addr) } case 42: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:338 { outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &nullgen) } case 43: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:345 { if yyDollar[2].addr.Type != obj.TYPE_CONST || yyDollar[4].addr.Type != obj.TYPE_CONST { yyerror("arguments to PCDATA must be integer constants") } outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[4].addr) } case 44: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:355 { if yyDollar[2].addr.Type != obj.TYPE_CONST { yyerror("index for FUNCDATA must be integer constant") } if yyDollar[4].addr.Type != obj.NAME_EXTERN && yyDollar[4].addr.Type != obj.NAME_STATIC && yyDollar[4].addr.Type != obj.TYPE_MEM { yyerror("value for FUNCDATA must be symbol reference") } outcode(yyDollar[1].lval, Always, &yyDollar[2].addr, 0, &yyDollar[4].addr) } case 45: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:368 { outcode(yyDollar[1].lval, Always, &nullgen, 0, &nullgen) } case 46: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:374 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_TEXTSIZE yyVAL.addr.Offset = int64(yyDollar[1].lval) yyVAL.addr.Val = int32(obj.ArgsSizeUnknown) } case 47: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:381 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_TEXTSIZE yyVAL.addr.Offset = -int64(yyDollar[2].lval) yyVAL.addr.Val = int32(obj.ArgsSizeUnknown) } case 48: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:388 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_TEXTSIZE yyVAL.addr.Offset = int64(yyDollar[1].lval) yyVAL.addr.Val = int32(yyDollar[3].lval) } case 49: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:395 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_TEXTSIZE yyVAL.addr.Offset = -int64(yyDollar[2].lval) yyVAL.addr.Val = int32(yyDollar[4].lval) } case 50: yyDollar = yyS[yypt-0 : yypt+1] //line a.y:403 { yyVAL.lval = Always } case 51: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:407 { yyVAL.lval = (yyDollar[1].lval & ^C_SCOND) | yyDollar[2].lval } case 52: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:411 { yyVAL.lval = yyDollar[1].lval | yyDollar[2].lval } case 55: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:420 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_BRANCH yyVAL.addr.Offset = int64(yyDollar[1].lval) + int64(asm.PC) } case 56: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:426 { yyDollar[1].sym = asm.LabelLookup(yyDollar[1].sym) yyVAL.addr = nullgen if asm.Pass == 2 && yyDollar[1].sym.Type != LLAB { yyerror("undefined label: %s", yyDollar[1].sym.Labelname) } yyVAL.addr.Type = obj.TYPE_BRANCH yyVAL.addr.Offset = yyDollar[1].sym.Value + int64(yyDollar[2].lval) } case 57: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:437 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_CONST yyVAL.addr.Offset = int64(yyDollar[2].lval) } case 58: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:443 { yyVAL.addr = yyDollar[2].addr yyVAL.addr.Type = obj.TYPE_ADDR } case 59: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:448 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_SCONST yyVAL.addr.Val = yyDollar[2].sval } case 61: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:457 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_FCONST yyVAL.addr.Val = yyDollar[2].dval } case 62: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:463 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_FCONST yyVAL.addr.Val = -yyDollar[3].dval } case 63: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:471 { yyVAL.lval = 1 << uint(yyDollar[1].lval&15) } case 64: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:475 { yyVAL.lval = 0 for i := yyDollar[1].lval; i <= yyDollar[3].lval; i++ { yyVAL.lval |= 1 << uint(i&15) } for i := yyDollar[3].lval; i <= yyDollar[1].lval; i++ { yyVAL.lval |= 1 << uint(i&15) } } case 65: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:485 { yyVAL.lval = (1 << uint(yyDollar[1].lval&15)) | yyDollar[3].lval } case 69: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:494 { yyVAL.addr = yyDollar[1].addr yyVAL.addr.Reg = int16(yyDollar[3].lval) } case 70: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:499 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_REG yyVAL.addr.Reg = int16(yyDollar[1].lval) } case 71: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:505 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_REG yyVAL.addr.Reg = int16(yyDollar[1].lval) } case 72: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:511 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_MEM yyVAL.addr.Offset = int64(yyDollar[1].lval) } case 76: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:522 { yyVAL.addr = yyDollar[1].addr if yyDollar[1].addr.Name != obj.NAME_EXTERN && yyDollar[1].addr.Name != obj.NAME_STATIC { } } case 77: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:530 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_MEM yyVAL.addr.Reg = int16(yyDollar[2].lval) yyVAL.addr.Offset = 0 } case 79: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:540 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_MEM yyVAL.addr.Reg = int16(yyDollar[3].lval) yyVAL.addr.Offset = int64(yyDollar[1].lval) } case 81: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:550 { yyVAL.addr = yyDollar[1].addr yyVAL.addr.Type = obj.TYPE_MEM yyVAL.addr.Reg = int16(yyDollar[3].lval) } case 86: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:563 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_CONST yyVAL.addr.Offset = int64(yyDollar[2].lval) } case 87: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:571 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_REG yyVAL.addr.Reg = int16(yyDollar[1].lval) } case 88: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:579 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_REGREG yyVAL.addr.Reg = int16(yyDollar[2].lval) yyVAL.addr.Offset = int64(yyDollar[4].lval) } case 89: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:588 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_SHIFT yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (0 << 5) } case 90: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:594 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_SHIFT yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (1 << 5) } case 91: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:600 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_SHIFT yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (2 << 5) } case 92: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:606 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_SHIFT yyVAL.addr.Offset = int64(yyDollar[1].lval&15) | int64(yyDollar[4].lval) | (3 << 5) } case 93: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:614 { if yyVAL.lval < REG_R0 || yyVAL.lval > REG_R15 { print("register value out of range\n") } yyVAL.lval = ((yyDollar[1].lval & 15) << 8) | (1 << 4) } case 94: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:621 { if yyVAL.lval < 0 || yyVAL.lval >= 32 { print("shift value out of range\n") } yyVAL.lval = (yyDollar[1].lval & 31) << 7 } case 96: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:631 { yyVAL.lval = REGPC } case 97: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:635 { if yyDollar[3].lval < 0 || yyDollar[3].lval >= NREG { print("register value out of range\n") } yyVAL.lval = REG_R0 + yyDollar[3].lval } case 99: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:645 { yyVAL.lval = REGSP } case 101: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:652 { if yyDollar[3].lval < 0 || yyDollar[3].lval >= NREG { print("register value out of range\n") } yyVAL.lval = yyDollar[3].lval // TODO(rsc): REG_C0+$3 } case 104: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:665 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_REG yyVAL.addr.Reg = int16(yyDollar[1].lval) } case 105: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:671 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_REG yyVAL.addr.Reg = int16(REG_F0 + yyDollar[3].lval) } case 106: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:679 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_MEM yyVAL.addr.Name = int8(yyDollar[3].lval) yyVAL.addr.Sym = nil yyVAL.addr.Offset = int64(yyDollar[1].lval) } case 107: yyDollar = yyS[yypt-5 : yypt+1] //line a.y:687 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_MEM yyVAL.addr.Name = int8(yyDollar[4].lval) yyVAL.addr.Sym = obj.Linklookup(asm.Ctxt, yyDollar[1].sym.Name, 0) yyVAL.addr.Offset = int64(yyDollar[2].lval) } case 108: yyDollar = yyS[yypt-7 : yypt+1] //line a.y:695 { yyVAL.addr = nullgen yyVAL.addr.Type = obj.TYPE_MEM yyVAL.addr.Name = obj.NAME_STATIC yyVAL.addr.Sym = obj.Linklookup(asm.Ctxt, yyDollar[1].sym.Name, 1) yyVAL.addr.Offset = int64(yyDollar[4].lval) } case 109: yyDollar = yyS[yypt-0 : yypt+1] //line a.y:704 { yyVAL.lval = 0 } case 110: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:708 { yyVAL.lval = yyDollar[2].lval } case 111: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:712 { yyVAL.lval = -yyDollar[2].lval } case 116: yyDollar = yyS[yypt-1 : yypt+1] //line a.y:724 { yyVAL.lval = int32(yyDollar[1].sym.Value) } case 117: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:728 { yyVAL.lval = -yyDollar[2].lval } case 118: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:732 { yyVAL.lval = yyDollar[2].lval } case 119: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:736 { yyVAL.lval = ^yyDollar[2].lval } case 120: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:740 { yyVAL.lval = yyDollar[2].lval } case 121: yyDollar = yyS[yypt-0 : yypt+1] //line a.y:745 { yyVAL.lval = 0 } case 122: yyDollar = yyS[yypt-2 : yypt+1] //line a.y:749 { yyVAL.lval = yyDollar[2].lval } case 124: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:756 { yyVAL.lval = yyDollar[1].lval + yyDollar[3].lval } case 125: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:760 { yyVAL.lval = yyDollar[1].lval - yyDollar[3].lval } case 126: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:764 { yyVAL.lval = yyDollar[1].lval * yyDollar[3].lval } case 127: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:768 { yyVAL.lval = yyDollar[1].lval / yyDollar[3].lval } case 128: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:772 { yyVAL.lval = yyDollar[1].lval % yyDollar[3].lval } case 129: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:776 { yyVAL.lval = yyDollar[1].lval << uint(yyDollar[4].lval) } case 130: yyDollar = yyS[yypt-4 : yypt+1] //line a.y:780 { yyVAL.lval = yyDollar[1].lval >> uint(yyDollar[4].lval) } case 131: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:784 { yyVAL.lval = yyDollar[1].lval & yyDollar[3].lval } case 132: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:788 { yyVAL.lval = yyDollar[1].lval ^ yyDollar[3].lval } case 133: yyDollar = yyS[yypt-3 : yypt+1] //line a.y:792 { yyVAL.lval = yyDollar[1].lval | yyDollar[3].lval } } goto yystack /* stack new state and value */ }
func Afunclit(a *obj.Addr, n *Node) { if a.Type == obj.TYPE_ADDR && a.Name == obj.NAME_EXTERN { a.Type = obj.TYPE_MEM a.Sym = Linksym(n.Sym) } }
// Naddr rewrites a to refer to n. // It assumes that a is zeroed on entry. func Naddr(a *obj.Addr, n *Node) { if n == nil { return } if n.Type != nil && n.Type.Etype != TIDEAL { // TODO(rsc): This is undone by the selective clearing of width below, // to match architectures that were not as aggressive in setting width // during naddr. Those widths must be cleared to avoid triggering // failures in gins when it detects real but heretofore latent (and one // hopes innocuous) type mismatches. // The type mismatches should be fixed and the clearing below removed. dowidth(n.Type) a.Width = n.Type.Width } switch n.Op { default: a := a // copy to let escape into Ctxt.Dconv Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a)) case OREGISTER: a.Type = obj.TYPE_REG a.Reg = n.Reg a.Sym = nil if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } case OINDREG: a.Type = obj.TYPE_MEM a.Reg = n.Reg a.Sym = Linksym(n.Sym) a.Offset = n.Xoffset if a.Offset != int64(int32(a.Offset)) { Yyerror("offset %d too large for OINDREG", a.Offset) } if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width. a.Width = 0 } // n->left is PHEAP ONAME for stack parameter. // compute address of actual parameter on stack. case OPARAM: a.Etype = uint8(Simtype[n.Left.Type.Etype]) a.Width = n.Left.Type.Width a.Offset = n.Xoffset a.Sym = Linksym(n.Left.Sym) a.Type = obj.TYPE_MEM a.Name = obj.NAME_PARAM a.Node = n.Left.Orig case OCLOSUREVAR: if !Curfn.Func.Needctxt { Fatalf("closurevar without needctxt") } a.Type = obj.TYPE_MEM a.Reg = int16(Thearch.REGCTXT) a.Sym = nil a.Offset = n.Xoffset case OCFUNC: Naddr(a, n.Left) a.Sym = Linksym(n.Left.Sym) case ONAME: a.Etype = 0 if n.Type != nil { a.Etype = uint8(Simtype[n.Type.Etype]) } a.Offset = n.Xoffset s := n.Sym a.Node = n.Orig //if(a->node >= (Node*)&n) // fatal("stack node"); if s == nil { s = Lookup(".noname") } if n.Name.Method { if n.Type != nil { if n.Type.Sym != nil { if n.Type.Sym.Pkg != nil { s = Pkglookup(s.Name, n.Type.Sym.Pkg) } } } } a.Type = obj.TYPE_MEM switch n.Class { default: Fatalf("naddr: ONAME class %v %d\n", n.Sym, n.Class) case PEXTERN: a.Name = obj.NAME_EXTERN case PAUTO: a.Name = obj.NAME_AUTO case PPARAM, PPARAMOUT: a.Name = obj.NAME_PARAM case PFUNC: a.Name = obj.NAME_EXTERN a.Type = obj.TYPE_ADDR a.Width = int64(Widthptr) s = funcsym(s) } a.Sym = Linksym(s) case OLITERAL: if Thearch.Thechar == '8' { a.Width = 0 } switch n.Val().Ctype() { default: Fatalf("naddr: const %v", Tconv(n.Type, obj.FmtLong)) case CTFLT: a.Type = obj.TYPE_FCONST a.Val = mpgetflt(n.Val().U.(*Mpflt)) case CTINT, CTRUNE: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = Mpgetfix(n.Val().U.(*Mpint)) case CTSTR: datagostring(n.Val().U.(string), a) case CTBOOL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = int64(obj.Bool2int(n.Val().U.(bool))) case CTNIL: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = 0 } case OADDR: Naddr(a, n.Left) a.Etype = uint8(Tptr) if Thearch.Thechar != '0' && Thearch.Thechar != '5' && Thearch.Thechar != '7' && Thearch.Thechar != '9' { // TODO(rsc): Do this even for arm, ppc64. a.Width = int64(Widthptr) } if a.Type != obj.TYPE_MEM { a := a // copy to let escape into Ctxt.Dconv Fatalf("naddr: OADDR %v (from %v)", Ctxt.Dconv(a), Oconv(int(n.Left.Op), 0)) } a.Type = obj.TYPE_ADDR // itable of interface value case OITAB: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // itab(nil) } a.Etype = uint8(Tptr) a.Width = int64(Widthptr) // pointer in a string or slice case OSPTR: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // ptr(nil) } a.Etype = uint8(Simtype[Tptr]) a.Offset += int64(Array_array) a.Width = int64(Widthptr) // len of string or slice case OLEN: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // len(nil) } a.Etype = uint8(Simtype[TUINT]) a.Offset += int64(Array_nel) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } // cap of string or slice case OCAP: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // cap(nil) } a.Etype = uint8(Simtype[TUINT]) a.Offset += int64(Array_cap) if Thearch.Thechar != '5' { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } } return }
/* * xtramodes enables the ARM post increment and * shift offset addressing modes to transform * MOVW 0(R3),R1 * ADD $4,R3,R3 * into * MOVW.P 4(R3),R1 * and * ADD R0,R1 * MOVBU 0(R1),R0 * into * MOVBU R0<<0(R1),R0 */ func xtramodes(g *gc.Graph, r *gc.Flow, a *obj.Addr) bool { p := (*obj.Prog)(r.Prog) v := obj.Addr(*a) v.Type = obj.TYPE_REG r1 := (*gc.Flow)(findpre(r, &v)) if r1 != nil { p1 := r1.Prog if p1.To.Type == obj.TYPE_REG && p1.To.Reg == v.Reg { switch p1.As { case arm.AADD: if p1.Scond&arm.C_SBIT != 0 { // avoid altering ADD.S/ADC sequences. break } if p1.From.Type == obj.TYPE_REG || (p1.From.Type == obj.TYPE_SHIFT && p1.From.Offset&(1<<4) == 0 && ((p.As != arm.AMOVB && p.As != arm.AMOVBS) || (a == &p.From && p1.From.Offset&^0xf == 0))) || ((p1.From.Type == obj.TYPE_ADDR || p1.From.Type == obj.TYPE_CONST) && p1.From.Offset > -4096 && p1.From.Offset < 4096) { if nochange(gc.Uniqs(r1), r, p1) { if a != &p.From || v.Reg != p.To.Reg { if finduse(g, r.S1, &v) { if p1.Reg == 0 || p1.Reg == v.Reg { /* pre-indexing */ p.Scond |= arm.C_WBIT } else { return false } } } switch p1.From.Type { /* register offset */ case obj.TYPE_REG: if gc.Nacl { return false } *a = obj.Addr{} a.Type = obj.TYPE_SHIFT a.Offset = int64(p1.From.Reg) & 15 /* scaled register offset */ case obj.TYPE_SHIFT: if gc.Nacl { return false } *a = obj.Addr{} a.Type = obj.TYPE_SHIFT fallthrough /* immediate offset */ case obj.TYPE_CONST, obj.TYPE_ADDR: a.Offset = p1.From.Offset } if p1.Reg != 0 { a.Reg = p1.Reg } excise(r1) return true } } case arm.AMOVW: if p1.From.Type == obj.TYPE_REG { r2 := (*gc.Flow)(findinc(r1, r, &p1.From)) if r2 != nil { var r3 *gc.Flow for r3 = gc.Uniqs(r2); r3.Prog.As == obj.ANOP; r3 = gc.Uniqs(r3) { } if r3 == r { /* post-indexing */ p1 := r2.Prog a.Reg = p1.To.Reg a.Offset = p1.From.Offset p.Scond |= arm.C_PBIT if !finduse(g, r, &r1.Prog.To) { excise(r1) } excise(r2) return true } } } } } } if a != &p.From || a.Reg != p.To.Reg { r1 := (*gc.Flow)(findinc(r, nil, &v)) if r1 != nil { /* post-indexing */ p1 := r1.Prog a.Offset = p1.From.Offset p.Scond |= arm.C_PBIT excise(r1) return true } } return false }