func buildBinaryOpExpr(b *builder, expr *tast.OpExpr) *ref { op := expr.Op.Lit A := b.buildExpr(expr.A) atyp := A.Type() if types.IsBasic(atyp, types.Bool) && (op == "&&" || op == "||") { switch op { case "&&": return buildLogicAnd(b, A, expr.B) case "||": return buildLogicOr(b, A, expr.B) } panic("unreachable") } B := b.buildExpr(expr.B) btyp := B.Type() if types.IsConst(atyp) && types.IsConst(btyp) { return binaryOpConst(b, op, A, B) } if op == ">>" || op == "<<" { ret := b.newTemp(atyp) buildShift(b, ret, A, B, op) return ret } if ok, t := types.SameBasic(atyp, btyp); ok { switch t { case types.Int, types.Int8: return binaryOpInt(b, op, A, B, t) case types.Uint, types.Uint8: return binaryOpUint(b, op, A, B, t) case types.Bool: return binaryOpBool(b, op, A, B) } panic("bug") } if types.IsNil(atyp) && types.IsNil(btyp) { return binaryOpNil(b, op, A, B) } else if types.BothPointer(atyp, btyp) { return binaryOpPtr(b, op, A, B) } else if types.BothFuncPointer(atyp, btyp) { return binaryOpPtr(b, op, A, B) } else if types.BothSlice(atyp, btyp) { return binaryOpSlice(b, op, A, B) } panic("bug") }
// allocPrepare checks if the provided types are all allocable, and insert // implicit type casts if needed. Only literay expression list needs alloc // prepare. func allocPrepare( b *builder, toks []*lex8.Token, lst *tast.ExprList, ) *tast.ExprList { ret := tast.NewExprList() for i, tok := range toks { e := lst.Exprs[i] t := e.Type() if types.IsNil(t) { b.Errorf(tok.Pos, "cannot infer type from nil for %q", tok.Lit) return nil } if v, ok := types.NumConst(t); ok { e = constCastInt(b, tok.Pos, v, e) if e == nil { return nil } } if !types.IsAllocable(t) { b.Errorf(tok.Pos, "cannot allocate for %s", t) return nil } ret.Append(e) } return ret }
func binaryOpPtr(b *builder, op string, A, B *ref) *ref { atyp := A.Type() btyp := B.Type() switch op { case "==", "!=": // replace nil with a typed zero if types.IsNil(atyp) { A = newRef(btyp, ir.Num(0)) } else if types.IsNil(btyp) { B = newRef(atyp, ir.Num(0)) } ret := b.newTemp(types.Bool) b.b.Arith(ret.IR(), A.IR(), op, B.IR()) return ret } panic("bug") }
func binaryOpPtr(b *builder, opTok *lex8.Token, A, B tast.Expr) tast.Expr { op := opTok.Lit atyp := A.R().T btyp := B.R().T switch op { case "==", "!=": if types.IsNil(atyp) { A = tast.NewCast(A, btyp) } else if types.IsNil(btyp) { B = tast.NewCast(B, atyp) } return &tast.OpExpr{A, opTok, B, tast.NewRef(types.Bool)} } b.Errorf(opTok.Pos, "%q on pointers", op) return nil }
func binaryOpSlice(b *builder, op string, A, B *ref) *ref { atyp := A.Type() btyp := B.Type() switch op { case "==", "!=": if types.IsNil(atyp) { return testNilSlice(b, B, op == "==") } else if types.IsNil(btyp) { return testNilSlice(b, A, op == "==") } addrA := b.newPtr() addrB := b.newPtr() b.b.Arith(addrA, nil, "&", A.IR()) b.b.Arith(addrB, nil, "&", B.IR()) baseA := ir.NewAddrRef(addrA, 4, 0, false, true) sizeA := ir.NewAddrRef(addrA, 4, 4, false, true) baseB := ir.NewAddrRef(addrB, 4, 0, false, true) sizeB := ir.NewAddrRef(addrB, 4, 4, false, true) ptrEq := b.newCond() sizeEq := b.newCond() b.b.Arith(ptrEq, baseA, "==", baseB) b.b.Arith(sizeEq, sizeA, "==", sizeB) ret := b.newCond() b.b.Arith(ret, ptrEq, "&", sizeEq) if op == "!=" { b.b.Arith(ret, nil, "!", ret) } return newRef(types.Bool, ret) } panic("bug") }
func assign(b *builder, dest, src tast.Expr, op *lex8.Token) tast.Stmt { destRef := dest.R() srcRef := src.R() ndest := destRef.Len() nsrc := srcRef.Len() if ndest != nsrc { b.Errorf(op.Pos, "cannot assign %s to %s", nsrc, ndest) return nil } for i := 0; i < ndest; i++ { r := destRef.At(i) if !r.Addressable { b.Errorf(op.Pos, "assigning to non-addressable") return nil } destType := r.Type() srcType := srcRef.At(i).Type() if !types.CanAssign(destType, srcType) { b.Errorf(op.Pos, "cannot assign %s to %s", srcType, destType) return nil } } // insert casting if needed if srcList, ok := tast.MakeExprList(src); ok { newList := tast.NewExprList() for i, e := range srcList.Exprs { t := e.Type() if types.IsNil(t) { e = tast.NewCast(e, destRef.At(i).Type()) } else if v, ok := types.NumConst(t); ok { e = constCast(b, nil, v, e, destRef.At(i).Type()) if e == nil { panic("bug") } } newList.Append(e) } src = newList } return &tast.AssignStmt{dest, op, src} }
func varDeclPrepare( b *builder, toks []*lex8.Token, lst *tast.ExprList, t types.T, ) *tast.ExprList { ret := tast.NewExprList() for i, tok := range toks { e := lst.Exprs[i] etype := e.Type() if types.IsNil(etype) { e = tast.NewCast(e, t) } else if v, ok := types.NumConst(etype); ok { e = constCast(b, tok.Pos, v, e, t) if e == nil { return nil } } ret.Append(e) } return ret }
func buildCast(b *builder, from *ref, t types.T) *ref { srcType := from.Type() ret := b.newTemp(t) if types.IsNil(srcType) { size := t.Size() if size == arch8.RegSize { return newRef(t, ir.Num(0)) } if _, ok := t.(*types.Slice); !ok { panic("bug") } ret := b.newTemp(t) b.b.Zero(ret.IR()) return ret } if c, ok := srcType.(*types.Const); ok { if v, ok := types.NumConst(srcType); ok && types.IsInteger(t) { return newRef(t, constNumIr(v, t)) } // TODO: we do not support typed const right? // so why need this line? srcType = c.Type // using the underlying type } if types.IsInteger(t) && types.IsInteger(srcType) { b.b.Arith(ret.IR(), nil, "cast", from.IR()) return ret } if regSizeCastable(t, srcType) { b.b.Arith(ret.IR(), nil, "", from.IR()) return ret } panic("bug") }
func buildReturnStmt(b *builder, stmt *ast.ReturnStmt) tast.Stmt { pos := stmt.Kw.Pos if stmt.Exprs == nil { if b.retType == nil || b.retNamed { return &tast.ReturnStmt{} } b.Errorf(pos, "expects return %s", fmt8.Join(b.retType, ",")) return nil } if b.retType == nil { b.Errorf(pos, "function expects no return value") return nil } src := b.buildExpr(stmt.Exprs) if src == nil { return nil } srcRef := src.R() nret := len(b.retType) nsrc := srcRef.Len() if nret != nsrc { b.Errorf(pos, "expect (%s), returning (%s)", fmt8.Join(b.retType, ","), srcRef, ) return nil } for i := 0; i < nret; i++ { t := b.retType[i] srcType := srcRef.At(i).Type() if !types.CanAssign(t, srcType) { b.Errorf(pos, "expect (%s), returning (%s)", fmt8.Join(b.retType, ","), srcRef, ) return nil } } // insert implicit type casts if srcList, ok := tast.MakeExprList(src); ok { newList := tast.NewExprList() for i, e := range srcList.Exprs { t := e.Type() if types.IsNil(t) { e = tast.NewCast(e, b.retType[i]) } else if v, ok := types.NumConst(t); ok { e = constCast(b, nil, v, e, b.retType[i]) if e == nil { panic("bug") } } newList.Append(e) } src = newList } return &tast.ReturnStmt{src} }
func buildBinaryOpExpr(b *builder, expr *ast.OpExpr) tast.Expr { opTok := expr.Op op := opTok.Lit opPos := opTok.Pos A := b.buildExpr(expr.A) if A == nil { return nil } aref := A.R() if !aref.IsSingle() { b.Errorf(opPos, "%q on %s", op, aref) return nil } atyp := aref.T B := b.buildExpr(expr.B) if B == nil { return nil } bref := B.R() if !bref.IsSingle() { b.Errorf(opPos, "%q on %s", op, bref) return nil } btyp := bref.T if types.IsConst(atyp) && types.IsConst(btyp) { return binaryOpConst(b, opTok, A, B) } if op == ">>" || op == "<<" { if v, ok := types.NumConst(btyp); ok { B = constCast(b, opPos, v, B, types.Uint) if B == nil { return nil } btyp = types.Uint } if v, ok := types.NumConst(atyp); ok { A = constCast(b, opPos, v, A, types.Int) if A == nil { return nil } atyp = types.Int } if !canShift(b, atyp, btyp, opPos, op) { return nil } r := tast.NewRef(atyp) return &tast.OpExpr{A, opTok, B, r} } if v, ok := types.NumConst(atyp); ok { A = constCast(b, opPos, v, A, btyp) if A == nil { return nil } atyp = btyp } else if c, ok := atyp.(*types.Const); ok { atyp = c.Type } if v, ok := types.NumConst(btyp); ok { B = constCast(b, opPos, v, B, atyp) if B == nil { return nil } btyp = atyp } else if c, ok := btyp.(*types.Const); ok { btyp = c.Type } if ok, t := types.SameBasic(atyp, btyp); ok { switch t { case types.Int, types.Int8, types.Uint, types.Uint8: return binaryOpInt(b, opTok, A, B, t) case types.Bool: return binaryOpBool(b, opTok, A, B) case types.Float32: b.Errorf(opPos, "floating point operations not implemented") return nil } } if types.IsNil(atyp) && types.IsNil(btyp) { return binaryOpNil(b, opTok, A, B) } else if types.BothPointer(atyp, btyp) { return binaryOpPtr(b, opTok, A, B) } else if types.BothFuncPointer(atyp, btyp) { return binaryOpPtr(b, opTok, A, B) } else if types.BothSlice(atyp, btyp) { return binaryOpSlice(b, opTok, A, B) } b.Errorf(opPos, "invalid operation of %s %s %s", atyp, op, btyp) if types.IsInteger(atyp) && types.IsInteger(btyp) { switch op { case "+", "-", "*", "&", "|", "^", "%", "/", "==", "!=", ">", "<", ">=", "<=": b.Errorf( opPos, "operation %s needs the same type on both sides", op, ) } } return nil }
func (r *ref) IsNil() bool { if !r.IsSingle() { return false } return types.IsNil(r.Type()) }
func buildCallExpr(b *builder, expr *ast.CallExpr) tast.Expr { f := b.buildExpr(expr.Func) if f == nil { return nil } pos := ast.ExprPos(expr.Func) fref := f.R() if !fref.IsSingle() { b.Errorf(pos, "%s is not callable", fref) return nil } if t, ok := fref.T.(*types.Type); ok { return buildCast(b, expr, t.T) } builtin, ok := fref.T.(*types.BuiltInFunc) if ok { switch builtin.Name { case "len": return buildCallLen(b, expr, f) case "make": return buildCallMake(b, expr, f) } b.Errorf(pos, "builtin %s() not implemented", builtin.Name) return nil } funcType, ok := fref.T.(*types.Func) if !ok { b.Errorf(pos, "function call on non-callable: %s", fref) return nil } args := buildExprList(b, expr.Args) if args == nil { return nil } argsRef := args.R() nargs := argsRef.Len() if nargs != len(funcType.Args) { b.Errorf(ast.ExprPos(expr), "argument expects (%s), got (%s)", fmt8.Join(funcType.Args, ","), args, ) return nil } // type check on each argument for i := 0; i < nargs; i++ { argType := argsRef.At(i).Type() expect := funcType.Args[i].T if !types.CanAssign(expect, argType) { pos := ast.ExprPos(expr.Args.Exprs[i]) b.Errorf(pos, "argument %d expects %s, got %s", i+1, expect, argType, ) return nil } } // insert casting when it is a literal expression list. callArgs, ok := tast.MakeExprList(args) if ok { castedArgs := tast.NewExprList() for i := 0; i < nargs; i++ { argExpr := callArgs.Exprs[i] argType := argExpr.Type() expect := funcType.Args[i].T // insert auto casts for consts if types.IsNil(argType) { castedArgs.Append(tast.NewCast(argExpr, expect)) } else if _, ok := types.NumConst(argType); ok { castedArgs.Append(tast.NewCast(argExpr, expect)) } else { castedArgs.Append(argExpr) } } args = castedArgs } retRef := tast.Void for _, t := range funcType.RetTypes { retRef = tast.AppendRef(retRef, tast.NewRef(t)) } return &tast.CallExpr{f, args, retRef} }