func (tm *TypeMap) makeAlgorithmTable(t types.Type) llvm.Value { // TODO set these to actual functions. hashAlg := llvm.ConstNull(llvm.PointerType(tm.hashAlgFunctionType, 0)) printAlg := llvm.ConstNull(llvm.PointerType(tm.printAlgFunctionType, 0)) copyAlg := llvm.ConstNull(llvm.PointerType(tm.copyAlgFunctionType, 0)) const eqalgsig = "func(uintptr, unsafe.Pointer, unsafe.Pointer) bool" var equalAlg llvm.Value switch t := t.(type) { case *types.Basic: switch t.Kind() { case types.String: equalAlg = tm.functions.NamedFunction("runtime.streqalg", eqalgsig) case types.Float32: equalAlg = tm.functions.NamedFunction("runtime.f32eqalg", eqalgsig) case types.Float64: equalAlg = tm.functions.NamedFunction("runtime.f64eqalg", eqalgsig) case types.Complex64: equalAlg = tm.functions.NamedFunction("runtime.c64eqalg", eqalgsig) case types.Complex128: equalAlg = tm.functions.NamedFunction("runtime.c128eqalg", eqalgsig) } } if equalAlg.IsNil() { equalAlg = tm.functions.NamedFunction("runtime.memequal", eqalgsig) } elems := []llvm.Value{hashAlg, equalAlg, printAlg, copyAlg} return llvm.ConstStruct(elems, false) }
func (c *compiler) makeInterface(v *LLVMValue, iface types.Type) *LLVMValue { llv := v.LLVMValue() lltyp := llv.Type() i8ptr := llvm.PointerType(llvm.Int8Type(), 0) if lltyp.TypeKind() == llvm.PointerTypeKind { llv = c.builder.CreateBitCast(llv, i8ptr, "") } else { // If the value fits exactly in a pointer, then we can just // bitcast it. Otherwise we need to malloc. if c.target.TypeStoreSize(lltyp) <= uint64(c.target.PointerSize()) { bits := c.target.TypeSizeInBits(lltyp) if bits > 0 { llv = coerce(c.builder, llv, llvm.IntType(int(bits))) llv = c.builder.CreateIntToPtr(llv, i8ptr, "") } else { llv = llvm.ConstNull(i8ptr) } } else { ptr := c.createTypeMalloc(lltyp) c.builder.CreateStore(llv, ptr) llv = c.builder.CreateBitCast(ptr, i8ptr, "") } } value := llvm.Undef(c.types.ToLLVM(iface)) rtype := c.types.ToRuntime(v.Type()) rtype = c.builder.CreateBitCast(rtype, llvm.PointerType(llvm.Int8Type(), 0), "") value = c.builder.CreateInsertValue(value, rtype, 0, "") value = c.builder.CreateInsertValue(value, llv, 1, "") if iface.Underlying().(*types.Interface).NumMethods() > 0 { result := c.NewValue(value, types.NewInterface(nil, nil)) result, _ = result.convertE2I(iface) return result } return c.NewValue(value, iface) }
func (tm *LLVMTypeMap) funcLLVMType(tstr string, f *types.Signature) llvm.Type { typ, ok := tm.types[tstr] if !ok { // If there's a receiver change the receiver to an // additional (first) parameter, and take the value of // the resulting signature instead. var param_types []llvm.Type if recv := f.Recv(); recv != nil { params := f.Params() paramvars := make([]*types.Var, int(params.Len()+1)) paramvars[0] = recv for i := 0; i < int(params.Len()); i++ { paramvars[i+1] = params.At(i) } params = types.NewTuple(paramvars...) f := types.NewSignature(nil, params, f.Results(), f.IsVariadic()) return tm.ToLLVM(f) } typ = llvm.GlobalContext().StructCreateNamed("") tm.types[tstr] = typ params := f.Params() nparams := int(params.Len()) for i := 0; i < nparams; i++ { typ := params.At(i).Type() if f.IsVariadic() && i == nparams-1 { typ = types.NewSlice(typ) } llvmtyp := tm.ToLLVM(typ) param_types = append(param_types, llvmtyp) } var return_type llvm.Type results := f.Results() switch nresults := int(results.Len()); nresults { case 0: return_type = llvm.VoidType() case 1: return_type = tm.ToLLVM(results.At(0).Type()) default: elements := make([]llvm.Type, nresults) for i := range elements { result := results.At(i) elements[i] = tm.ToLLVM(result.Type()) } return_type = llvm.StructType(elements, false) } fntyp := llvm.FunctionType(return_type, param_types, false) fnptrtyp := llvm.PointerType(fntyp, 0) i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{fnptrtyp, i8ptr} // func, closure typ.StructSetBody(elements, false) } return typ }
func (tm *TypeMap) makeAlgorithmTable(t types.Type) llvm.Value { // TODO set these to actual functions. hashAlg := llvm.ConstNull(llvm.PointerType(tm.hashAlgFunctionType, 0)) equalAlg := llvm.ConstNull(llvm.PointerType(tm.equalAlgFunctionType, 0)) printAlg := llvm.ConstNull(llvm.PointerType(tm.printAlgFunctionType, 0)) copyAlg := llvm.ConstNull(llvm.PointerType(tm.copyAlgFunctionType, 0)) elems := []llvm.Value{hashAlg, equalAlg, printAlg, copyAlg} return llvm.ConstStruct(elems, false) }
func (tm *TypeMap) makeAlgorithmTable(t types.Type) llvm.Value { // TODO set these to actual functions. hashAlg := llvm.ConstNull(llvm.PointerType(tm.hashAlgFunctionType, 0)) printAlg := llvm.ConstNull(llvm.PointerType(tm.printAlgFunctionType, 0)) copyAlg := llvm.ConstNull(llvm.PointerType(tm.copyAlgFunctionType, 0)) equalAlg := tm.functions.NamedFunction("runtime.memequal", "func f(uintptr, unsafe.Pointer, unsafe.Pointer) bool") elems := []llvm.Value{hashAlg, equalAlg, printAlg, copyAlg} return llvm.ConstStruct(elems, false) }
func (c *compiler) createMainFunction() error { // In a PNaCl program (plugin), there should not be a "main.main"; // instead, we expect a "main.CreateModule" function. // See pkg/nacl/ppapi/ppapi.go for more details. mainMain := c.module.NamedFunction("main.main") /* if c.pnacl { // PNaCl's libppapi_stub.a implements "main", which simply // calls through to PpapiPluginMain. We define our own "main" // so that we can capture argc/argv. if !mainMain.IsNil() { return fmt.Errorf("Found main.main") } pluginMain := c.RuntimeFunction("PpapiPluginMain", "func() int32") // Synthesise a main which has no return value. We could cast // PpapiPluginMain, but this is potentially unsafe as its // calling convention is unspecified. ftyp := llvm.FunctionType(llvm.VoidType(), nil, false) mainMain = llvm.AddFunction(c.module.Module, "main.main", ftyp) entry := llvm.AddBasicBlock(mainMain, "entry") c.builder.SetInsertPointAtEnd(entry) c.builder.CreateCall(pluginMain, nil, "") c.builder.CreateRetVoid() } else */{ mainMain = c.module.NamedFunction("main.main") } if mainMain.IsNil() { return fmt.Errorf("Could not find main.main") } // runtime.main is called by main, with argc, argv, argp, // and a pointer to main.main, which must be a niladic // function with no result. runtimeMain := c.runtime.main.LLVMValue() ptrptr := llvm.PointerType(llvm.PointerType(llvm.Int8Type(), 0), 0) ftyp := llvm.FunctionType(llvm.Int32Type(), []llvm.Type{llvm.Int32Type(), ptrptr, ptrptr}, true) main := llvm.AddFunction(c.module.Module, "main", ftyp) c.builder.SetCurrentDebugLocation(c.debug.MDNode(nil)) entry := llvm.AddBasicBlock(main, "entry") c.builder.SetInsertPointAtEnd(entry) runtimeMainParamTypes := runtimeMain.Type().ElementType().ParamTypes() args := []llvm.Value{ main.Param(0), // argc main.Param(1), // argv main.Param(2), // argp c.builder.CreateBitCast(mainMain, runtimeMainParamTypes[3], ""), } result := c.builder.CreateCall(runtimeMain, args, "") c.builder.CreateRet(result) return nil }
func (tm *llvmTypeMap) funcLLVMType(f *types.Signature, name string) llvm.Type { // If there's a receiver change the receiver to an // additional (first) parameter, and take the value of // the resulting signature instead. if recv := f.Recv(); recv != nil { params := f.Params() paramvars := make([]*types.Var, int(params.Len()+1)) paramvars[0] = recv for i := 0; i < int(params.Len()); i++ { paramvars[i+1] = params.At(i) } params = types.NewTuple(paramvars...) f := types.NewSignature(nil, nil, params, f.Results(), f.Variadic()) return tm.toLLVM(f, name) } if typ, ok := tm.types.At(f).(llvm.Type); ok { return typ } typ := llvm.GlobalContext().StructCreateNamed(name) tm.types.Set(f, typ) params := f.Params() param_types := make([]llvm.Type, params.Len()) for i := range param_types { llvmtyp := tm.ToLLVM(params.At(i).Type()) param_types[i] = llvmtyp } var return_type llvm.Type results := f.Results() switch nresults := int(results.Len()); nresults { case 0: return_type = llvm.VoidType() case 1: return_type = tm.ToLLVM(results.At(0).Type()) default: elements := make([]llvm.Type, nresults) for i := range elements { result := results.At(i) elements[i] = tm.ToLLVM(result.Type()) } return_type = llvm.StructType(elements, false) } fntyp := llvm.FunctionType(return_type, param_types, false) fnptrtyp := llvm.PointerType(fntyp, 0) i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{fnptrtyp, i8ptr} // func, closure typ.StructSetBody(elements, false) return typ }
func (tm *TypeMap) makeAlgorithmTable(t types.Type) llvm.Value { // TODO set these to actual functions. hashAlg := llvm.ConstNull(llvm.PointerType(tm.alg.hashAlgFunctionType, 0)) printAlg := llvm.ConstNull(llvm.PointerType(tm.alg.printAlgFunctionType, 0)) copyAlg := llvm.ConstNull(llvm.PointerType(tm.alg.copyAlgFunctionType, 0)) equalAlg := tm.alg.eqalg(t) elems := []llvm.Value{ AlgorithmHash: hashAlg, AlgorithmEqual: equalAlg, AlgorithmPrint: printAlg, AlgorithmCopy: copyAlg, } return llvm.ConstStruct(elems, false) }
func (tm *LLVMTypeMap) pointerLLVMType(p *types.Pointer) llvm.Type { if p.Elem().Underlying() == p { // Recursive pointers must be handled specially, as // LLVM does not permit recursive types except via // named structs. if tm.ptrstandin.IsNil() { ctx := llvm.GlobalContext() unique := ctx.StructCreateNamed("") tm.ptrstandin = llvm.PointerType(unique, 0) } return llvm.PointerType(tm.ptrstandin, 0) } return llvm.PointerType(tm.ToLLVM(p.Elem()), 0) }
func getnewgoroutine(module llvm.Module) llvm.Value { fn := module.NamedFunction("llgo_newgoroutine") if fn.IsNil() { i8Ptr := llvm.PointerType(llvm.Int8Type(), 0) VoidFnPtr := llvm.PointerType(llvm.FunctionType( llvm.VoidType(), []llvm.Type{i8Ptr}, false), 0) i32 := llvm.Int32Type() fn_type := llvm.FunctionType( llvm.VoidType(), []llvm.Type{VoidFnPtr, i8Ptr, i32}, true) fn = llvm.AddFunction(module, "llgo_newgoroutine", fn_type) fn.SetFunctionCallConv(llvm.CCallConv) } return fn }
func (tm *TypeMap) funcLLVMType(f *types.Func) llvm.Type { param_types := make([]llvm.Type, 0) // Add receiver parameter. if f.Recv != nil { recv_type := f.Recv.Type.(types.Type) param_types = append(param_types, tm.ToLLVM(recv_type)) } for _, param := range f.Params { param_type := param.Type.(types.Type) param_types = append(param_types, tm.ToLLVM(param_type)) } var return_type llvm.Type switch len(f.Results) { case 0: return_type = llvm.VoidType() case 1: return_type = tm.ToLLVM(f.Results[0].Type.(types.Type)) default: elements := make([]llvm.Type, len(f.Results)) for i, result := range f.Results { elements[i] = tm.ToLLVM(result.Type.(types.Type)) } return_type = llvm.StructType(elements, false) } fn_type := llvm.FunctionType(return_type, param_types, false) return llvm.PointerType(fn_type, 0) }
func (tm *TypeMap) makeRuntimeTypeGlobal(v llvm.Value, name string) (global, ptr llvm.Value) { global = llvm.AddGlobal(tm.module, v.Type(), typeSymbol(name)) global.SetInitializer(v) global.SetLinkage(llvm.LinkOnceAnyLinkage) ptr = llvm.ConstBitCast(global, llvm.PointerType(tm.runtime.rtype.llvm, 0)) return global, ptr }
func (c *compiler) defineMemcpyFunction(fn llvm.Value) { entry := llvm.AddBasicBlock(fn, "entry") c.builder.SetInsertPointAtEnd(entry) dst, src, size := fn.Param(0), fn.Param(1), fn.Param(2) pint8 := llvm.PointerType(llvm.Int8Type(), 0) dst = c.builder.CreateIntToPtr(dst, pint8, "") src = c.builder.CreateIntToPtr(src, pint8, "") sizeType := size.Type() sizeBits := sizeType.IntTypeWidth() memcpyName := "llvm.memcpy.p0i8.p0i8.i" + strconv.Itoa(sizeBits) memcpy := c.module.NamedFunction(memcpyName) if memcpy.IsNil() { paramtypes := []llvm.Type{ pint8, pint8, size.Type(), llvm.Int32Type(), llvm.Int1Type()} memcpyType := llvm.FunctionType(llvm.VoidType(), paramtypes, false) memcpy = llvm.AddFunction(c.module.Module, memcpyName, memcpyType) } args := []llvm.Value{ dst, src, size, llvm.ConstInt(llvm.Int32Type(), 1, false), // single byte alignment llvm.ConstInt(llvm.Int1Type(), 0, false), // not volatile } c.builder.CreateCall(memcpy, args, "") c.builder.CreateRetVoid() }
func (tm *TypeMap) makeAlgorithmTable(t types.Type) llvm.Value { // TODO set these to actual functions. hashAlg := llvm.ConstNull(llvm.PointerType(tm.hashAlgFunctionType, 0)) printAlg := llvm.ConstNull(llvm.PointerType(tm.printAlgFunctionType, 0)) copyAlg := llvm.ConstNull(llvm.PointerType(tm.copyAlgFunctionType, 0)) equalAlgName := "runtime.memequal" equalAlg := tm.module.NamedFunction(equalAlgName) if equalAlg.IsNil() { equalAlg = llvm.AddFunction( tm.module, equalAlgName, tm.equalAlgFunctionType) } elems := []llvm.Value{hashAlg, equalAlg, printAlg, copyAlg} return llvm.ConstStruct(elems, false) }
// interfaceMethod returns a function pointer for the specified // interface and method pair. func (c *compiler) interfaceMethod(iface *LLVMValue, method *types.Func) *LLVMValue { lliface := iface.LLVMValue() llitab := c.builder.CreateExtractValue(lliface, 0, "") llvalue := c.builder.CreateExtractValue(lliface, 1, "") sig := method.Type().(*types.Signature) methodset := c.types.MethodSet(sig.Recv().Type()) // TODO(axw) cache ordered method index var index int for i := 0; i < methodset.Len(); i++ { if methodset.At(i).Obj() == method { index = i break } } llitab = c.builder.CreateBitCast(llitab, llvm.PointerType(c.runtime.itab.llvm, 0), "") llifn := c.builder.CreateGEP(llitab, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), 0, false), llvm.ConstInt(llvm.Int32Type(), 5, false), // index of itab.fun }, "") _ = index llifn = c.builder.CreateGEP(llifn, []llvm.Value{ llvm.ConstInt(llvm.Int32Type(), uint64(index), false), }, "") llifn = c.builder.CreateLoad(llifn, "") // Strip receiver. sig = types.NewSignature(nil, nil, sig.Params(), sig.Results(), sig.Variadic()) llfn := llvm.Undef(c.types.ToLLVM(sig)) llifn = c.builder.CreateIntToPtr(llifn, llfn.Type().StructElementTypes()[0], "") llfn = c.builder.CreateInsertValue(llfn, llifn, 0, "") llfn = c.builder.CreateInsertValue(llfn, llvalue, 1, "") return c.NewValue(llfn, sig) }
// makeSlice allocates a new slice with the optional length and capacity, // initialising its contents to their zero values. func (c *compiler) makeSlice(elttyp types.Type, length, capacity Value) llvm.Value { var lengthValue llvm.Value if length != nil { lengthValue = length.Convert(types.Typ[types.Int]).LLVMValue() } else { lengthValue = llvm.ConstNull(c.llvmtypes.inttype) } // TODO check capacity >= length capacityValue := lengthValue if capacity != nil { capacityValue = capacity.Convert(types.Typ[types.Int]).LLVMValue() } eltType := c.types.ToLLVM(elttyp) sizeof := llvm.ConstTruncOrBitCast(llvm.SizeOf(eltType), c.types.inttype) size := c.builder.CreateMul(capacityValue, sizeof, "") mem := c.createMalloc(size) mem = c.builder.CreateIntToPtr(mem, llvm.PointerType(eltType, 0), "") c.memsetZero(mem, size) slicetyp := types.NewSlice(elttyp) struct_ := llvm.Undef(c.types.ToLLVM(slicetyp)) struct_ = c.builder.CreateInsertValue(struct_, mem, 0, "") struct_ = c.builder.CreateInsertValue(struct_, lengthValue, 1, "") struct_ = c.builder.CreateInsertValue(struct_, capacityValue, 2, "") return struct_ }
func (tm *llvmTypeMap) basicLLVMType(b *types.Basic) llvm.Type { switch b.Kind() { case types.Bool: return llvm.Int1Type() case types.Int8, types.Uint8: return llvm.Int8Type() case types.Int16, types.Uint16: return llvm.Int16Type() case types.Int32, types.Uint32: return llvm.Int32Type() case types.Uint, types.Int: return tm.inttype case types.Int64, types.Uint64: return llvm.Int64Type() case types.Float32: return llvm.FloatType() case types.Float64: return llvm.DoubleType() case types.UnsafePointer, types.Uintptr: return tm.target.IntPtrType() case types.Complex64: f32 := llvm.FloatType() elements := []llvm.Type{f32, f32} return llvm.StructType(elements, false) case types.Complex128: f64 := llvm.DoubleType() elements := []llvm.Type{f64, f64} return llvm.StructType(elements, false) case types.String: i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{i8ptr, tm.inttype} return llvm.StructType(elements, false) } panic(fmt.Sprint("unhandled kind: ", b.Kind)) }
func (tm *TypeMap) basicLLVMType(b *types.Basic) llvm.Type { switch b.Kind { case types.BoolKind: return llvm.Int1Type() case types.Int8Kind, types.Uint8Kind: return llvm.Int8Type() case types.Int16Kind, types.Uint16Kind: return llvm.Int16Type() case types.Int32Kind, types.Uint32Kind: return llvm.Int32Type() case types.Int64Kind, types.Uint64Kind: return llvm.Int64Type() case types.Float32Kind: return llvm.FloatType() case types.Float64Kind: return llvm.DoubleType() case types.UnsafePointerKind, types.UintptrKind, types.UintKind, types.IntKind: return tm.target.IntPtrType() //case Complex64: TODO //case Complex128: //case UntypedInt: //case UntypedFloat: //case UntypedComplex: case types.StringKind: i8ptr := llvm.PointerType(llvm.Int8Type(), 0) elements := []llvm.Type{i8ptr, llvm.Int32Type()} return llvm.StructType(elements, false) } panic(fmt.Sprint("unhandled kind: ", b.Kind)) }
func addExterns(m *llgo.Module) { CharPtr := llvm.PointerType(llvm.Int8Type(), 0) fn_type := llvm.FunctionType( llvm.Int32Type(), []llvm.Type{CharPtr}, false) fflush := llvm.AddFunction(m.Module, "fflush", fn_type) fflush.SetFunctionCallConv(llvm.CCallConv) }
func (tm *TypeMap) nameRuntimeType(n *types.Named) (global, ptr llvm.Value) { name := typeString(n) path := "runtime" if pkg := n.Obj().Pkg(); pkg != nil { path = pkg.Path() } if path != tm.pkgpath { // We're not compiling the package from whence the type came, // so we'll just create a pointer to it here. global := llvm.AddGlobal(tm.module, tm.runtime.rtype.llvm, typeSymbol(name)) global.SetInitializer(llvm.ConstNull(tm.runtime.rtype.llvm)) global.SetLinkage(llvm.CommonLinkage) return global, global } // If the underlying type is Basic, then we always create // a new global. Otherwise, we clone the value returned // from toRuntime in case it is cached and reused. underlying := n.Underlying() if basic, ok := underlying.(*types.Basic); ok { global, ptr = tm.basicRuntimeType(basic, true) global.SetName(typeSymbol(name)) } else { global, ptr = tm.toRuntime(underlying) clone := llvm.AddGlobal(tm.module, global.Type().ElementType(), typeSymbol(name)) clone.SetInitializer(global.Initializer()) global = clone ptr = llvm.ConstBitCast(global, llvm.PointerType(tm.runtime.rtype.llvm, 0)) } global.SetLinkage(llvm.ExternalLinkage) // Locate the rtype. underlyingRuntimeType := global.Initializer() rtype := underlyingRuntimeType if rtype.Type() != tm.runtime.rtype.llvm { rtype = llvm.ConstExtractValue(rtype, []uint32{0}) } // Insert the uncommon type. uncommonTypeInit := tm.uncommonType(n, nil) uncommonType := llvm.AddGlobal(tm.module, uncommonTypeInit.Type(), "") uncommonType.SetInitializer(uncommonTypeInit) rtype = llvm.ConstInsertValue(rtype, uncommonType, []uint32{9}) // Replace the rtype's string representation with the one from // uncommonType. XXX should we have the package name prepended? Probably. namePtr := llvm.ConstExtractValue(uncommonTypeInit, []uint32{0}) rtype = llvm.ConstInsertValue(rtype, namePtr, []uint32{8}) // Update the global's initialiser. Note that we take a copy // of the underlying type; we're not updating a shared type. if underlyingRuntimeType.Type() != tm.runtime.rtype.llvm { underlyingRuntimeType = llvm.ConstInsertValue(underlyingRuntimeType, rtype, []uint32{0}) } else { underlyingRuntimeType = rtype } global.SetInitializer(underlyingRuntimeType) return global, ptr }
func (tm *TypeMap) makeRuntimeTypeGlobal(v llvm.Value) (global, ptr llvm.Value) { // Each runtime type is preceded by an interface{}. initType := llvm.StructType([]llvm.Type{tm.runtimeType, v.Type()}, false) global = llvm.AddGlobal(tm.module, initType, "") ptr = llvm.ConstBitCast(global, llvm.PointerType(tm.runtimeType, 0)) // interface{} containing v's *commonType representation. runtimeTypeValue := llvm.Undef(tm.runtimeType) zero := llvm.ConstNull(llvm.Int32Type()) one := llvm.ConstInt(llvm.Int32Type(), 1, false) i8ptr := llvm.PointerType(llvm.Int8Type(), 0) if tm.commonTypePtrRuntimeType.IsNil() { // Create a dummy pointer value, which we'll update straight after // defining the runtime type info for commonType. tm.commonTypePtrRuntimeType = llvm.Undef(i8ptr) commonTypePtr := &types.Pointer{Base: tm.commonType} commonTypeGlobal, commonTypeRuntimeType := tm.makeRuntimeType(tm.commonType) tm.types[tm.commonType.String()] = runtimeTypeInfo{commonTypeGlobal, commonTypeRuntimeType} commonTypePtrGlobal, commonTypePtrRuntimeType := tm.makeRuntimeType(commonTypePtr) tm.types[commonTypePtr.String()] = runtimeTypeInfo{commonTypePtrGlobal, commonTypePtrRuntimeType} tm.commonTypePtrRuntimeType = llvm.ConstBitCast(commonTypePtrRuntimeType, i8ptr) if tm.pkgpath == tm.commonType.Package { // Update the interace{} header of the commonType/*commonType // runtime types we just created. for _, g := range [...]llvm.Value{commonTypeGlobal, commonTypePtrGlobal} { init := g.Initializer() typptr := tm.commonTypePtrRuntimeType runtimeTypeValue := llvm.ConstExtractValue(init, []uint32{0}) runtimeTypeValue = llvm.ConstInsertValue(runtimeTypeValue, typptr, []uint32{0}) init = llvm.ConstInsertValue(init, runtimeTypeValue, []uint32{0}) g.SetInitializer(init) } } } commonTypePtr := llvm.ConstGEP(global, []llvm.Value{zero, one}) commonTypePtr = llvm.ConstBitCast(commonTypePtr, i8ptr) runtimeTypeValue = llvm.ConstInsertValue(runtimeTypeValue, tm.commonTypePtrRuntimeType, []uint32{0}) runtimeTypeValue = llvm.ConstInsertValue(runtimeTypeValue, commonTypePtr, []uint32{1}) init := llvm.Undef(initType) init = llvm.ConstInsertValue(init, runtimeTypeValue, []uint32{0}) init = llvm.ConstInsertValue(init, v, []uint32{1}) global.SetInitializer(init) return global, ptr }
func (c *compiler) defineFreeFunction(fn llvm.Value) { entry := llvm.AddBasicBlock(fn, "entry") c.builder.SetInsertPointAtEnd(entry) ptr := fn.FirstParam() ptrtyp := llvm.PointerType(llvm.Int8Type(), 0) c.builder.CreateFree(c.builder.CreateIntToPtr(ptr, ptrtyp, "")) c.builder.CreateRetVoid() }
func (tm *TypeMap) sliceLLVMType(s *types.Slice) llvm.Type { elements := []llvm.Type{ llvm.PointerType(tm.ToLLVM(s.Elt), 0), llvm.Int32Type(), llvm.Int32Type(), } return llvm.StructType(elements, false) }
func NewTypeMap(module llvm.Module, target llvm.TargetData, exprTypes map[ast.Expr]types.Type) *TypeMap { tm := &TypeMap{module: module, target: target, expr: exprTypes} tm.types = make(map[types.Type]llvm.Type) tm.runtime = make(map[types.Type]llvm.Value) // Load "reflect.go", and generate LLVM types for the runtime type // structures. pkg, err := parseReflect() if err != nil { panic(err) // FIXME return err } objToLLVMType := func(name string) llvm.Type { obj := pkg.Scope.Lookup(name) return tm.ToLLVM(obj.Type.(types.Type)) } tm.runtimeCommonType = objToLLVMType("commonType") tm.runtimeUncommonType = objToLLVMType("uncommonType") tm.runtimeArrayType = objToLLVMType("arrayType") tm.runtimeChanType = objToLLVMType("chanType") tm.runtimeFuncType = objToLLVMType("funcType") tm.runtimeInterfaceType = objToLLVMType("interfaceType") tm.runtimeMapType = objToLLVMType("mapType") tm.runtimePtrType = objToLLVMType("ptrType") tm.runtimeSliceType = objToLLVMType("sliceType") tm.runtimeStructType = objToLLVMType("structType") // Types for algorithms. See 'runtime/runtime.h'. uintptrType := tm.target.IntPtrType() voidPtrType := llvm.PointerType(llvm.Int8Type(), 0) boolType := llvm.Int1Type() // Create runtime algorithm function types. params := []llvm.Type{ llvm.PointerType(uintptrType, 0), uintptrType, voidPtrType} tm.hashAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) params = []llvm.Type{ llvm.PointerType(boolType, 0), uintptrType, voidPtrType, voidPtrType} tm.equalAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) params = []llvm.Type{uintptrType, voidPtrType} tm.printAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) params = []llvm.Type{uintptrType, voidPtrType, voidPtrType} tm.copyAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) return tm }
func NewTypeMap(llvmtm *LLVMTypeMap, module llvm.Module, pkgpath string, exprTypes map[ast.Expr]types.Type, c *FunctionCache, r Resolver) *TypeMap { tm := &TypeMap{ LLVMTypeMap: llvmtm, module: module, pkgpath: pkgpath, types: make(map[string]runtimeTypeInfo), expr: exprTypes, functions: c, resolver: r, } // Load runtime/reflect types, and generate LLVM types for // the structures we need to populate runtime type information. pkg, err := c.compiler.parseReflect() if err != nil { panic(err) // FIXME return err } reflectLLVMType := func(name string) llvm.Type { obj := pkg.Scope.Lookup(name) if obj == nil { panic(fmt.Errorf("Failed to find type: %s", name)) } return tm.ToLLVM(obj.Type.(types.Type)) } tm.runtimeType = reflectLLVMType("runtimeType") tm.runtimeCommonType = reflectLLVMType("commonType") tm.runtimeUncommonType = reflectLLVMType("uncommonType") tm.runtimeArrayType = reflectLLVMType("arrayType") tm.runtimeChanType = reflectLLVMType("chanType") tm.runtimeFuncType = reflectLLVMType("funcType") tm.runtimeMethod = reflectLLVMType("method") tm.runtimeImethod = reflectLLVMType("imethod") tm.runtimeInterfaceType = reflectLLVMType("interfaceType") tm.runtimeMapType = reflectLLVMType("mapType") tm.runtimePtrType = reflectLLVMType("ptrType") tm.runtimeSliceType = reflectLLVMType("sliceType") tm.runtimeStructType = reflectLLVMType("structType") tm.commonType = pkg.Scope.Lookup("commonType").Type.(*types.Name) // Types for algorithms. See 'runtime/runtime.h'. uintptrType := tm.target.IntPtrType() voidPtrType := llvm.PointerType(llvm.Int8Type(), 0) boolType := llvm.Int1Type() // Create runtime algorithm function types. params := []llvm.Type{uintptrType, voidPtrType} tm.hashAlgFunctionType = llvm.FunctionType(uintptrType, params, false) params = []llvm.Type{uintptrType, uintptrType, uintptrType} tm.equalAlgFunctionType = llvm.FunctionType(boolType, params, false) params = []llvm.Type{uintptrType, voidPtrType} tm.printAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) params = []llvm.Type{uintptrType, voidPtrType, voidPtrType} tm.copyAlgFunctionType = llvm.FunctionType(llvm.VoidType(), params, false) return tm }
func getPrintf(module llvm.Module) llvm.Value { printf := module.NamedFunction("printf") if printf.IsNil() { charPtr := llvm.PointerType(llvm.Int8Type(), 0) ftyp := llvm.FunctionType(llvm.Int32Type(), []llvm.Type{charPtr}, true) printf = llvm.AddFunction(module, "printf", ftyp) printf.SetFunctionCallConv(llvm.CCallConv) } return printf }
func getFflush(module llvm.Module) llvm.Value { fflush := module.NamedFunction("fflush") if fflush.IsNil() { voidPtr := llvm.PointerType(llvm.Int8Type(), 0) ftyp := llvm.FunctionType(llvm.Int32Type(), []llvm.Type{voidPtr}, false) fflush = llvm.AddFunction(module, "fflush", ftyp) fflush.SetFunctionCallConv(llvm.CCallConv) } return fflush }
// coerce yields a value of the the type specified, initialised // to the exact bit pattern as in the specified value. // // Note: the value's type and the specified target type must have // the same size. If the source is an aggregate, then the target // must also be an aggregate with the same number of fields, each // of which must have the same size. func coerce(b llvm.Builder, v llvm.Value, t llvm.Type) llvm.Value { // FIXME don't do this with alloca switch t.TypeKind() { case llvm.ArrayTypeKind, llvm.StructTypeKind: ptr := b.CreateAlloca(t, "") ptrv := b.CreateBitCast(ptr, llvm.PointerType(v.Type(), 0), "") b.CreateStore(v, ptrv) return b.CreateLoad(ptr, "") } vt := v.Type() switch vt.TypeKind() { case llvm.ArrayTypeKind, llvm.StructTypeKind: ptr := b.CreateAlloca(vt, "") b.CreateStore(v, ptr) ptrt := b.CreateBitCast(ptr, llvm.PointerType(t, 0), "") return b.CreateLoad(ptrt, "") } return b.CreateBitCast(v, t, "") }
// globalStringPtr returns a *string with the specified value. func (tm *TypeMap) globalStringPtr(value string) llvm.Value { strval := llvm.ConstString(value, false) strglobal := llvm.AddGlobal(tm.module, strval.Type(), "") strglobal.SetInitializer(strval) strglobal = llvm.ConstBitCast(strglobal, llvm.PointerType(llvm.Int8Type(), 0)) strlen := llvm.ConstInt(tm.inttype, uint64(len(value)), false) str := llvm.ConstStruct([]llvm.Value{strglobal, strlen}, false) g := llvm.AddGlobal(tm.module, str.Type(), "") g.SetInitializer(str) return g }
// coerce yields a value of the the type specified, initialised // to the exact bit pattern as in the specified value. // // Note: the specified value must be a non-aggregate, and its type // and the specified type must have the same size. func (c *compiler) coerce(v llvm.Value, t llvm.Type) llvm.Value { switch t.TypeKind() { case llvm.ArrayTypeKind, llvm.StructTypeKind: ptr := c.builder.CreateAlloca(t, "") ptrv := c.builder.CreateBitCast(ptr, llvm.PointerType(v.Type(), 0), "") c.builder.CreateStore(v, ptrv) return c.builder.CreateLoad(ptr, "") } vt := v.Type() switch vt.TypeKind() { case llvm.ArrayTypeKind, llvm.StructTypeKind: ptr := c.builder.CreateAlloca(vt, "") c.builder.CreateStore(v, ptr) ptrt := c.builder.CreateBitCast(ptr, llvm.PointerType(t, 0), "") return c.builder.CreateLoad(ptrt, "") } return c.builder.CreateBitCast(v, t, "") }