func convertBatchError(tableDesc *TableDescriptor, b client.Batch, pErr *proto.Error) error { err := pErr.GoError() if pErr.Index == nil { return err } index := pErr.Index.Index if index >= int32(len(b.Results)) { panic(fmt.Sprintf("index %d outside of results: %+v", index, b.Results)) } result := b.Results[index] if _, ok := err.(*proto.ConditionFailedError); ok { for _, row := range result.Rows { indexID, key, err := decodeIndexKeyPrefix(tableDesc, row.Key) if err != nil { return err } index, err := tableDesc.FindIndexByID(indexID) if err != nil { return err } valTypes, err := makeKeyVals(tableDesc, index.ColumnIDs) if err != nil { return err } vals := make([]parser.Datum, len(valTypes)) if _, err := decodeKeyVals(valTypes, vals, key); err != nil { return err } return errUniquenessConstraintViolation{index: index, vals: vals} } } return err }
// If we hit an error and there is a pending transaction, rollback // the transaction before returning. The client does not have to // deal with cleaning up transaction state. func makeResultFromError(planMaker *planner, err error) driver.Result { if planMaker.txn != nil { if err != errTransactionAborted { planMaker.txn.Cleanup(err) } // This transaction will normally get marked aborted as part of // Cleanup above, but we do it explicitly here because edge cases // exist: // (1) // BEGIN // <some operation which is implemented using CPut, which fails> // (2) // BEGIN // <syntax error> // Both cases will not write any intents, and so client.Txn will // not actually send an EndTransaction, and rightly so. // Unfortunately, we depend on txn.Proto.Status being equivalent to // our SQL transaction's status, and in these cases, our SQL // transaction is aborted. planMaker.txn.Proto.Status = proto.ABORTED } var errProto proto.Error errProto.SetResponseGoError(err) return driver.Result{Error: &errProto} }
// ServeHTTP serves the SQL API by treating the request URL path // as the method, the request body as the arguments, and sets the // response body as the method reply. The request body is unmarshalled // into arguments based on the Content-Type request header. Protobuf // and JSON-encoded requests are supported. The response body is // encoded according to the request's Accept header, or if not // present, in the same format as the request's incoming Content-Type // header. func (s *Server) ServeHTTP(w http.ResponseWriter, r *http.Request) { defer r.Body.Close() method := r.URL.Path if !strings.HasPrefix(method, driver.Endpoint) { http.Error(w, http.StatusText(http.StatusNotFound), http.StatusNotFound) return } // Check TLS settings. authenticationHook, err := security.AuthenticationHook(s.context.Insecure, r.TLS) if err != nil { http.Error(w, err.Error(), http.StatusUnauthorized) return } method = strings.TrimPrefix(method, driver.Endpoint) if method != driver.Execute.String() { http.Error(w, http.StatusText(http.StatusNotFound), http.StatusNotFound) return } // Unmarshal the request. reqBody, err := ioutil.ReadAll(r.Body) if err != nil { http.Error(w, err.Error(), http.StatusInternalServerError) return } var args driver.Request if err := util.UnmarshalRequest(r, reqBody, &args, allowedEncodings); err != nil { http.Error(w, err.Error(), http.StatusBadRequest) return } // Check request user against client certificate user. if err := authenticationHook(&args); err != nil { http.Error(w, err.Error(), http.StatusUnauthorized) return } // Send the Request for SQL execution and set the application-level error // on the reply. reply, err := s.exec(args) if err != nil { errProto := proto.Error{} errProto.SetResponseGoError(err) reply.Error = &errProto } // Marshal the response. body, contentType, err := util.MarshalResponse(r, &reply, allowedEncodings) if err != nil { http.Error(w, err.Error(), http.StatusInternalServerError) return } w.Header().Set(util.ContentTypeHeader, contentType) w.Write(body) }
// If we hit an error and there is a pending transaction, rollback // the transaction before returning. The client does not have to // deal with cleaning up transaction state. func makeResultFromError(planMaker *planner, err error) driver.Result { if planMaker.txn != nil { if err != errTransactionAborted { planMaker.txn.Cleanup(err) } } var errProto proto.Error errProto.SetResponseGoError(err) return driver.Result{Error: &errProto} }
// If we hit an error and there is a pending transaction, rollback // the transaction before returning. The client does not have to // deal with cleaning up transaction state. func rollbackTxnAndReturnResultWithError(planMaker *planner, err error) driver.Result { if planMaker.txn != nil { // What do we do with a rollback error? This is an internally // initiated rollback that the client is unaware of. Reporting it // will only cause confusion. Not reporting it could leave a transaction // pending, but that will get GCed eventually. _ = planMaker.txn.Rollback() } var errProto proto.Error errProto.SetResponseGoError(err) return driver.Result{Error: &errProto} }
// updateState updates the transaction state in both the success and // error cases, applying those updates to the corresponding txnMeta // object when adequate. It also updates certain errors with the // updated transaction for use by client restarts. func (tc *TxnCoordSender) updateState(ctx context.Context, ba proto.BatchRequest, br *proto.BatchResponse, pErr *proto.Error) *proto.Error { trace := tracer.FromCtx(ctx) newTxn := &proto.Transaction{} newTxn.Update(ba.GetTxn()) err := pErr.GoError() switch t := err.(type) { case nil: newTxn.Update(br.GetTxn()) // Move txn timestamp forward to response timestamp if applicable. // TODO(tschottdorf): see (*Replica).executeBatch and comments within. // Looks like this isn't necessary any more, nor did it prevent a bug // referenced in a TODO there. newTxn.Timestamp.Forward(br.Timestamp) case *proto.TransactionStatusError: // Likely already committed or more obscure errors such as epoch or // timestamp regressions; consider txn dead. defer tc.cleanupTxn(trace, t.Txn) case *proto.OpRequiresTxnError: // TODO(tschottdorf): range-spanning autowrap currently broken. panic("TODO(tschottdorf): disabled") case *proto.ReadWithinUncertaintyIntervalError: // Mark the host as certain. See the protobuf comment for // Transaction.CertainNodes for details. if t.NodeID == 0 { panic("no replica set in header on uncertainty restart") } newTxn.CertainNodes.Add(t.NodeID) // If the reader encountered a newer write within the uncertainty // interval, move the timestamp forward, just past that write or // up to MaxTimestamp, whichever comes first. candidateTS := newTxn.MaxTimestamp candidateTS.Backward(t.ExistingTimestamp.Add(0, 1)) newTxn.Timestamp.Forward(candidateTS) newTxn.Restart(ba.GetUserPriority(), newTxn.Priority, newTxn.Timestamp) t.Txn = *newTxn case *proto.TransactionAbortedError: // Increase timestamp if applicable. newTxn.Timestamp.Forward(t.Txn.Timestamp) newTxn.Priority = t.Txn.Priority t.Txn = *newTxn // Clean up the freshly aborted transaction in defer(), avoiding a // race with the state update below. defer tc.cleanupTxn(trace, t.Txn) case *proto.TransactionPushError: // Increase timestamp if applicable, ensuring that we're // just ahead of the pushee. newTxn.Timestamp.Forward(t.PusheeTxn.Timestamp.Add(0, 1)) newTxn.Restart(ba.GetUserPriority(), t.PusheeTxn.Priority-1, newTxn.Timestamp) t.Txn = newTxn case *proto.TransactionRetryError: // Increase timestamp if applicable. newTxn.Timestamp.Forward(t.Txn.Timestamp) newTxn.Restart(ba.GetUserPriority(), t.Txn.Priority, newTxn.Timestamp) t.Txn = *newTxn case proto.TransactionRestartError: // Assertion: The above cases should exhaust all ErrorDetails which // carry a Transaction. if pErr.Detail != nil { panic(fmt.Sprintf("unhandled TransactionRestartError %T", err)) } } return func() *proto.Error { if len(newTxn.ID) <= 0 { return pErr } id := string(newTxn.ID) tc.Lock() defer tc.Unlock() txnMeta := tc.txns[id] // For successful transactional requests, keep the written intents and // the updated transaction record to be sent along with the reply. // The transaction metadata is created with the first writing operation // TODO(tschottdorf): already computed the intents prior to sending, // consider re-using those. if intents := ba.GetIntents(); len(intents) > 0 && err == nil { if txnMeta == nil { newTxn.Writing = true txnMeta = &txnMetadata{ txn: *newTxn, keys: cache.NewIntervalCache(cache.Config{Policy: cache.CacheNone}), firstUpdateNanos: tc.clock.PhysicalNow(), lastUpdateNanos: tc.clock.PhysicalNow(), timeoutDuration: tc.clientTimeout, txnEnd: make(chan struct{}), } tc.txns[id] = txnMeta // If the transaction is already over, there's no point in // launching a one-off coordinator which will shut down right // away. if _, isEnding := ba.GetArg(proto.EndTransaction); !isEnding { trace.Event("coordinator spawns") if !tc.stopper.RunAsyncTask(func() { tc.heartbeatLoop(id) }) { // The system is already draining and we can't start the // heartbeat. We refuse new transactions for now because // they're likely not going to have all intents committed. // In principle, we can relax this as needed though. tc.unregisterTxnLocked(id) return proto.NewError(&proto.NodeUnavailableError{}) } } } for _, intent := range intents { txnMeta.addKeyRange(intent.Key, intent.EndKey) } } // Update our record of this transaction, even on error. if txnMeta != nil { txnMeta.txn.Update(newTxn) // better to replace after #2300 if !txnMeta.txn.Writing { panic("tracking a non-writing txn") } txnMeta.setLastUpdate(tc.clock.PhysicalNow()) } if err == nil { // For successful transactional requests, always send the updated txn // record back. if br.Txn == nil { br.Txn = &proto.Transaction{} } *br.Txn = *newTxn } return pErr }() }
// Send implements the batch.Sender interface. If the request is part of a // transaction, the TxnCoordSender adds the transaction to a map of active // transactions and begins heartbeating it. Every subsequent request for the // same transaction updates the lastUpdate timestamp to prevent live // transactions from being considered abandoned and garbage collected. // Read/write mutating requests have their key or key range added to the // transaction's interval tree of key ranges for eventual cleanup via resolved // write intents; they're tagged to an outgoing EndTransaction request, with // the receiving replica in charge of resolving them. func (tc *TxnCoordSender) Send(ctx context.Context, ba proto.BatchRequest) (*proto.BatchResponse, *proto.Error) { tc.maybeBeginTxn(&ba) ba.CmdID = ba.GetOrCreateCmdID(tc.clock.PhysicalNow()) var startNS int64 // This is the earliest point at which the request has a ClientCmdID and/or // TxnID (if applicable). Begin a Trace which follows this request. trace := tc.tracer.NewTrace(&ba) defer trace.Finalize() // TODO(tschottdorf): always "Batch" defer trace.Epoch(fmt.Sprintf("sending %s", ba.Method()))() ctx = tracer.ToCtx(ctx, trace) // TODO(tschottdorf): No looping through the batch will be necessary once // we've eliminated all the redundancies. for _, arg := range ba.Requests { trace.Event(fmt.Sprintf("%T", arg.GetValue())) if err := updateForBatch(arg.GetInner(), ba.RequestHeader); err != nil { return nil, proto.NewError(err) } } var id string // optional transaction ID if ba.Txn != nil { // If this request is part of a transaction... id = string(ba.Txn.ID) // Verify that if this Transaction is not read-only, we have it on // file. If not, refuse writes - the client must have issued a write on // another coordinator previously. if ba.Txn.Writing && ba.IsTransactionWrite() { tc.Lock() _, ok := tc.txns[id] tc.Unlock() if !ok { return nil, proto.NewError(util.Errorf("transaction must not write on multiple coordinators")) } } // Set the timestamp to the original timestamp for read-only // commands and to the transaction timestamp for read/write // commands. if ba.IsReadOnly() { ba.Timestamp = ba.Txn.OrigTimestamp } else { ba.Timestamp = ba.Txn.Timestamp } if rArgs, ok := ba.GetArg(proto.EndTransaction); ok { et := rArgs.(*proto.EndTransactionRequest) // Remember when EndTransaction started in case we want to // be linearizable. startNS = tc.clock.PhysicalNow() if len(et.Intents) > 0 { // TODO(tschottdorf): it may be useful to allow this later. // That would be part of a possible plan to allow txns which // write on multiple coordinators. return nil, proto.NewError(util.Errorf("client must not pass intents to EndTransaction")) } if len(et.Key) != 0 { return nil, proto.NewError(util.Errorf("EndTransaction must not have a Key set")) } et.Key = ba.Txn.Key tc.Lock() txnMeta, metaOK := tc.txns[id] if id != "" && metaOK { et.Intents = txnMeta.intents() } tc.Unlock() if intents := ba.GetIntents(); len(intents) > 0 { // Writes in Batch, so EndTransaction is fine. Should add // outstanding intents to EndTransaction, though. // TODO(tschottdorf): possible issues when the batch fails, // but the intents have been added anyways. // TODO(tschottdorf): some of these intents may be covered // by others, for example {[a,b), a}). This can lead to // some extra requests when those are non-local to the txn // record. But it doesn't seem worth optimizing now. et.Intents = append(et.Intents, intents...) } else if !metaOK { // If we don't have the transaction, then this must be a retry // by the client. We can no longer reconstruct a correct // request so we must fail. // // TODO(bdarnell): if we had a GetTransactionStatus API then // we could lookup the transaction and return either nil or // TransactionAbortedError instead of this ambivalent error. return nil, proto.NewError(util.Errorf("transaction is already committed or aborted")) } if len(et.Intents) == 0 { // If there aren't any intents, then there's factually no // transaction to end. Read-only txns have all of their state in // the client. return nil, proto.NewError(util.Errorf("cannot commit a read-only transaction")) } // TODO(tschottdorf): V(1) for _, intent := range et.Intents { trace.Event(fmt.Sprintf("intent: [%s,%s)", intent.Key, intent.EndKey)) } } } // Send the command through wrapped sender, taking appropriate measures // on error. var br *proto.BatchResponse { var pErr *proto.Error br, pErr = tc.wrapped.Send(ctx, ba) if _, ok := pErr.GoError().(*proto.OpRequiresTxnError); ok { br, pErr = tc.resendWithTxn(ba) } if pErr := tc.updateState(ctx, ba, br, pErr); pErr != nil { return nil, pErr } } if br.Txn == nil { return br, nil } if _, ok := ba.GetArg(proto.EndTransaction); !ok { return br, nil } // If the --linearizable flag is set, we want to make sure that // all the clocks in the system are past the commit timestamp // of the transaction. This is guaranteed if either // - the commit timestamp is MaxOffset behind startNS // - MaxOffset ns were spent in this function // when returning to the client. Below we choose the option // that involves less waiting, which is likely the first one // unless a transaction commits with an odd timestamp. if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS { startNS = tsNS } sleepNS := tc.clock.MaxOffset() - time.Duration(tc.clock.PhysicalNow()-startNS) if tc.linearizable && sleepNS > 0 { defer func() { if log.V(1) { log.Infof("%v: waiting %s on EndTransaction for linearizability", br.Txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond)) } time.Sleep(sleepNS) }() } if br.Txn.Status != proto.PENDING { tc.cleanupTxn(trace, *br.Txn) } return br, nil }
// sendChunk is in charge of sending an "admissible" piece of batch, i.e. one // which doesn't need to be subdivided further before going to a range (so no // mixing of forward and reverse scans, etc). func (ds *DistSender) sendChunk(ctx context.Context, ba proto.BatchRequest) (*proto.BatchResponse, *proto.Error) { // TODO(tschottdorf): prepare for removing Key and EndKey from BatchRequest, // making sure that anything that relies on them goes bust. ba.Key, ba.EndKey = nil, nil isReverse := ba.IsReverse() trace := tracer.FromCtx(ctx) // The minimal key range encompassing all requests contained within. // Local addressing has already been resolved. // TODO(tschottdorf): consider rudimentary validation of the batch here // (for example, non-range requests with EndKey, or empty key ranges). from, to := keys.Range(ba) var br *proto.BatchResponse // Send the request to one range per iteration. for { options := lookupOptions{ useReverseScan: isReverse, } var curReply *proto.BatchResponse var desc *proto.RangeDescriptor var needAnother bool var pErr *proto.Error for r := retry.Start(ds.rpcRetryOptions); r.Next(); { // Get range descriptor (or, when spanning range, descriptors). Our // error handling below may clear them on certain errors, so we // refresh (likely from the cache) on every retry. descDone := trace.Epoch("meta descriptor lookup") var evictDesc func() desc, needAnother, evictDesc, pErr = ds.getDescriptors(from, to, options) descDone() // getDescriptors may fail retryably if the first range isn't // available via Gossip. if pErr != nil { if pErr.Retryable { if log.V(1) { log.Warning(pErr) } continue } break } // If there's no transaction and op spans ranges, possibly // re-run as part of a transaction for consistency. The // case where we don't need to re-run is if the read // consistency is not required. if needAnother && ba.Txn == nil && ba.IsRange() && ba.ReadConsistency != proto.INCONSISTENT { return nil, proto.NewError(&proto.OpRequiresTxnError{}) } // It's possible that the returned descriptor misses parts of the // keys it's supposed to scan after it's truncated to match the // descriptor. Example revscan [a,g), first desc lookup for "g" // returns descriptor [c,d) -> [d,g) is never scanned. // We evict and retry in such a case. if (isReverse && !desc.ContainsKeyRange(desc.StartKey, to)) || (!isReverse && !desc.ContainsKeyRange(from, desc.EndKey)) { evictDesc() continue } curReply, pErr = func() (*proto.BatchResponse, *proto.Error) { // Truncate the request to our current key range. untruncate, numActive, trErr := truncate(&ba, desc, from, to) if numActive == 0 && trErr == nil { untruncate() // This shouldn't happen in the wild, but some tests // exercise it. return nil, proto.NewError(util.Errorf("truncation resulted in empty batch on [%s,%s): %s", from, to, ba)) } defer untruncate() if trErr != nil { return nil, proto.NewError(trErr) } // TODO(tschottdorf): make key range on batch redundant. The // requests within dictate it anyways. ba.Key, ba.EndKey = keys.Range(ba) reply, err := ds.sendAttempt(trace, ba, desc) ba.Key, ba.EndKey = nil, nil if err != nil { if log.V(1) { log.Warningf("failed to invoke %s: %s", ba, pErr) } } return reply, err }() // If sending succeeded, break this loop. if pErr == nil { break } // Error handling below. // If retryable, allow retry. For range not found or range // key mismatch errors, we don't backoff on the retry, // but reset the backoff loop so we can retry immediately. switch tErr := pErr.GoError().(type) { case *proto.SendError: // For an RPC error to occur, we must've been unable to contact // any replicas. In this case, likely all nodes are down (or // not getting back to us within a reasonable amount of time). // We may simply not be trying to talk to the up-to-date // replicas, so clearing the descriptor here should be a good // idea. // TODO(tschottdorf): If a replica group goes dead, this // will cause clients to put high read pressure on the first // range, so there should be some rate limiting here. evictDesc() if tErr.CanRetry() { continue } case *proto.RangeNotFoundError, *proto.RangeKeyMismatchError: trace.Event(fmt.Sprintf("reply error: %T", tErr)) // Range descriptor might be out of date - evict it. evictDesc() // On addressing errors, don't backoff; retry immediately. r.Reset() if log.V(1) { log.Warning(tErr) } // On retries, allow [uncommitted] intents on range descriptor // lookups to be returned 50% of the time in order to succeed // at finding the transaction record pointed to by the intent // itself. The 50% probability of returning either the current // intent or the previously committed value balances between // the two cases where the intent's txn hasn't yet been // committed (the previous value is correct), or the intent's // txn has been committed (the intent value is correct). options.considerIntents = true continue case *proto.NotLeaderError: trace.Event(fmt.Sprintf("reply error: %T", tErr)) newLeader := tErr.GetLeader() // Verify that leader is a known replica according to the // descriptor. If not, we've got a stale replica; evict cache. // Next, cache the new leader. if newLeader != nil { if i, _ := desc.FindReplica(newLeader.StoreID); i == -1 { if log.V(1) { log.Infof("error indicates unknown leader %s, expunging descriptor %s", newLeader, desc) } evictDesc() } } else { newLeader = &proto.Replica{} } ds.updateLeaderCache(proto.RangeID(desc.RangeID), *newLeader) if log.V(1) { log.Warning(tErr) } r.Reset() continue case retry.Retryable: if tErr.CanRetry() { if log.V(1) { log.Warning(tErr) } trace.Event(fmt.Sprintf("reply error: %T", tErr)) continue } } break } // Immediately return if querying a range failed non-retryably. if pErr != nil { return nil, pErr } first := br == nil if first { // First response from a Range. br = curReply } else { // This was the second or later call in a cross-Range request. // Combine the new response with the existing one. if err := br.Combine(curReply); err != nil { // TODO(tschottdorf): return nil, proto.NewError(err) panic(err) } } // If this request has a bound (such as MaxResults in // ScanRequest) and we are going to query at least one more range, // check whether enough rows have been retrieved. // TODO(tschottdorf): need tests for executing a multi-range batch // with various bounded requests which saturate at different times. if needAnother { // Start with the assumption that all requests are saturated. // Below, we look at each and decide whether that's true. // Everything that is indeed saturated is "masked out" from the // batch request; only if that's all requests does needAnother // remain false. needAnother = false if first { // Clone ba.Requests. This is because we're multi-range, and // some requests may be bounded, which could lead to them being // masked out once they're saturated. We don't want to risk // removing requests that way in the "master copy" since that // could lead to omitting requests in certain retry scenarios. ba.Requests = append([]proto.RequestUnion(nil), ba.Requests...) } for i, union := range ba.Requests { args := union.GetInner() if _, ok := args.(*proto.NoopRequest); ok { // NoopRequests are skipped. continue } boundedArg, ok := args.(proto.Bounded) if !ok { // Non-bounded request. We will have to query all ranges. needAnother = true continue } prevBound := boundedArg.GetBound() cReply, ok := curReply.Responses[i].GetInner().(proto.Countable) if !ok || prevBound <= 0 { // Request bounded, but without max results. Again, will // need to query everything we can. The case in which the reply // isn't countable occurs when the request wasn't active for // that range (since it didn't apply to it), so the response // is a NoopResponse. needAnother = true continue } nextBound := prevBound - cReply.Count() if nextBound <= 0 { // We've hit max results for this piece of the batch. Mask // it out (we've copied the requests slice above, so this // is kosher). ba.Requests[i].Reset() // necessary (no one-of?) if !ba.Requests[i].SetValue(&proto.NoopRequest{}) { panic("RequestUnion excludes NoopRequest") } continue } // The request isn't saturated yet. needAnother = true boundedArg.SetBound(nextBound) } } // If this was the last range accessed by this call, exit loop. if !needAnother { return br, nil } if isReverse { // In next iteration, query previous range. // We use the StartKey of the current descriptor as opposed to the // EndKey of the previous one since that doesn't have bugs when // stale descriptors come into play. to = prev(ba, desc.StartKey) } else { // In next iteration, query next range. // It's important that we use the EndKey of the current descriptor // as opposed to the StartKey of the next one: if the former is stale, // it's possible that the next range has since merged the subsequent // one, and unless both descriptors are stale, the next descriptor's // StartKey would move us to the beginning of the current range, // resulting in a duplicate scan. from = next(ba, desc.EndKey) } trace.Event("querying next range") } }
func (b *Batch) fillResults(br *proto.BatchResponse, pErr *proto.Error) error { offset := 0 for i := range b.Results { result := &b.Results[i] for k := 0; k < result.calls; k++ { args := b.reqs[offset+k] var reply proto.Response if result.Err == nil { result.Err = pErr.GoError() if result.Err == nil { if offset+k < len(br.Responses) { reply = br.Responses[offset+k].GetValue().(proto.Response) } else if args.Method() != proto.EndTransaction { // TODO(tschottdorf): EndTransaction is excepted here // because it may be elided (r/o txns). Might prefer to // simulate an EndTransaction response instead; this // effectively just leaks here. panic("not enough responses for calls") } } } switch req := args.(type) { case *proto.GetRequest: row := &result.Rows[k] row.Key = []byte(req.Key) if result.Err == nil { row.Value = reply.(*proto.GetResponse).Value } case *proto.PutRequest: row := &result.Rows[k] row.Key = []byte(req.Key) if result.Err == nil { row.Value = &req.Value row.setTimestamp(reply.(*proto.PutResponse).Timestamp) } case *proto.ConditionalPutRequest: row := &result.Rows[k] row.Key = []byte(req.Key) if result.Err == nil { row.Value = &req.Value row.setTimestamp(reply.(*proto.ConditionalPutResponse).Timestamp) } case *proto.IncrementRequest: row := &result.Rows[k] row.Key = []byte(req.Key) if result.Err == nil { t := reply.(*proto.IncrementResponse) row.Value = &proto.Value{ Bytes: encoding.EncodeUint64(nil, uint64(t.NewValue)), Tag: proto.ValueType_INT, } row.setTimestamp(t.Timestamp) } case *proto.ScanRequest: if result.Err == nil { t := reply.(*proto.ScanResponse) result.Rows = make([]KeyValue, len(t.Rows)) for j := range t.Rows { src := &t.Rows[j] dst := &result.Rows[j] dst.Key = src.Key dst.Value = &src.Value } } case *proto.ReverseScanRequest: if result.Err == nil { t := reply.(*proto.ReverseScanResponse) result.Rows = make([]KeyValue, len(t.Rows)) for j := range t.Rows { src := &t.Rows[j] dst := &result.Rows[j] dst.Key = src.Key dst.Value = &src.Value } } case *proto.DeleteRequest: row := &result.Rows[k] row.Key = []byte(args.(*proto.DeleteRequest).Key) case *proto.DeleteRangeRequest: case *proto.EndTransactionRequest: case *proto.AdminMergeRequest: case *proto.AdminSplitRequest: case *proto.HeartbeatTxnRequest: case *proto.GCRequest: case *proto.PushTxnRequest: case *proto.RangeLookupRequest: case *proto.ResolveIntentRequest: case *proto.ResolveIntentRangeRequest: case *proto.MergeRequest: case *proto.TruncateLogRequest: case *proto.LeaderLeaseRequest: case *proto.BatchRequest: // Nothing to do for these methods as they do not generate any // rows. default: if result.Err == nil { result.Err = fmt.Errorf("unsupported reply: %T", reply) } } } offset += result.calls } for i := range b.Results { result := &b.Results[i] if result.Err != nil { return result.Err } } return nil }