// CheckFront0 returns front0 and number of failed/success func CheckFront0(opt *Optimiser, verbose bool) (nfailed int, front0 []*Solution) { front0 = make([]*Solution, 0) var nsuccess int for _, sol := range opt.Solutions { var failed bool for _, oor := range sol.Oor { if oor > 0 { failed = true break } } if failed { nfailed++ } else { nsuccess++ if sol.FrontId == 0 { front0 = append(front0, sol) } } } if verbose { if nfailed > 0 { io.PfRed("N failed = %d out of %d\n", nfailed, opt.Nsol) } else { io.PfGreen("N success = %d out of %d\n", nsuccess, opt.Nsol) } io.PfYel("N front 0 = %d\n", len(front0)) } return }
func Test_shp01(tst *testing.T) { //verbose() chk.PrintTitle("shp01") r := []float64{0, 0, 0} verb := true for name, _ := range Functions { io.Pfyel("--------------------------------- %-6s---------------------------------\n", name) // check S tol := 1e-17 if name == "tri10" { tol = 1e-14 } checkShape(tst, name, tol, verb) // check dSdR tol = 1e-14 if name == "lin5" || name == "lin4" || name == "tri10" || name == "qua12" || name == "qua16" { tol = 1e-10 } if name == "tri15" { tol = 1e-9 } checkDerivs(tst, name, r, tol, verb) io.PfGreen("OK\n") } }
func Test_imap(tst *testing.T) { //utl.Tsilent = false chk.PrintTitle("Test imap") for name, shape := range factory { gndim := shape.Gndim if gndim == 1 { continue } io.Pfyel("--------------------------------- %-6s---------------------------------\n", name) // check inverse mapping tol := 1e-14 noise := 0.01 if name == "tri10" { tol = 1e-14 } if shape.FaceNvertsMax > 2 { noise = 0.0 } nverts := shape.Nverts C := la.MatAlloc(gndim, nverts) s := []float64{rand.Float64(), rand.Float64(), rand.Float64()} // scale factors la.MatCopy(C, 1.0, shape.NatCoords) _ = tol io.Pf("nverts:%v\n", nverts) io.Pf("gndim:%v\n", gndim) for i := 0; i < gndim; i++ { for j := 0; j < nverts; j++ { C[i][j] *= s[i] C[i][j] += noise * rand.Float64() // noise } } r := make([]float64, 3) x := make([]float64, 3) R := la.MatAlloc(gndim, nverts) for j := 0; j < nverts; j++ { for i := 0; i < gndim; i++ { x[i] = C[i][j] } err := shape.InvMap(r, x, C) io.Pf("r:%v\n", r) _ = err for i := 0; i < gndim; i++ { R[i][j] = r[i] } } chk.Matrix(tst, "checking", tol, R, shape.NatCoords) io.PfGreen("OK\n") } }
func main() { mpi.Start(false) defer func() { mpi.Stop(false) }() if mpi.Rank() == 0 { io.PfYel("\nTest MPI 04\n") } for i := 0; i < 60; i++ { time.Sleep(1e9) io.Pf("hello from %v\n", mpi.Rank()) if mpi.Rank() == 2 && i == 3 { io.PfGreen("rank = 3 wants to abort (the following error is OK)\n") mpi.Abort() } } }
func Test_shape01(tst *testing.T) { //verbose() chk.PrintTitle("shape01") r := []float64{0, 0, 0} verb := true for name, shape := range factory { io.Pfyel("--------------------------------- %-6s---------------------------------\n", name) // check S tol := 1e-17 if name == "tri10" { tol = 1e-14 } CheckShape(tst, shape, tol, verb) // check Sf tol = 1e-18 CheckShapeFace(tst, shape, tol, verb) // check dSdR tol = 1e-14 if name == "lin5" || name == "lin4" || name == "tri10" || name == "qua12" || name == "qua16" { tol = 1e-10 } if name == "tri15" { tol = 1e-9 } CheckDSdR(tst, shape, r, tol, verb) io.PfGreen("OK\n") } }
// Run computes β starting witn an initial guess func (o *ReliabFORM) Run(βtrial float64, verbose bool, args ...interface{}) (β float64, μ, σ, x []float64) { // initial random variables β = βtrial nx := len(o.μ) μ = make([]float64, nx) // mean values (equivalent normal value) σ = make([]float64, nx) // deviation values (equivalent normal value) x = make([]float64, nx) // current vector of random variables defining min(β) for i := 0; i < nx; i++ { μ[i] = o.μ[i] σ[i] = o.σ[i] x[i] = o.μ[i] } // lognormal distribution structure var lnd DistLogNormal // has lognormal random variable? haslrv := false for _, found := range o.lrv { if found { haslrv = true break } } // function to compute β with x-constant // gβ(β) = g(μ - β・A・σ) = 0 var err error gβfcn := func(fy, y []float64) error { βtmp := y[0] for i := 0; i < nx; i++ { o.xtmp[i] = μ[i] - βtmp*o.α[i]*σ[i] } fy[0], err = o.gfcn(o.xtmp, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", o.xtmp, err) } return nil } // derivative of gβ w.r.t β hβfcn := func(dfdy [][]float64, y []float64) error { βtmp := y[0] for i := 0; i < nx; i++ { o.xtmp[i] = μ[i] - βtmp*o.α[i]*σ[i] } err = o.hfcn(o.dgdx, o.xtmp, args) if err != nil { chk.Panic("cannot compute hfcn(%v):\n%v", o.xtmp, err) } dfdy[0][0] = 0 for i := 0; i < nx; i++ { dfdy[0][0] -= o.dgdx[i] * o.α[i] * σ[i] } return nil } // nonlinear solver with y[0] = β // solving: gβ(β) = g(μ - β・A・σ) = 0 var nls num.NlSolver nls.Init(1, gβfcn, nil, hβfcn, true, false, nil) defer nls.Clean() // message if verbose { io.Pf("\n%s", io.StrThickLine(60)) } // plotting plot := o.PlotFnk != "" if nx != 2 { plot = false } if plot { if o.PlotNp < 3 { o.PlotNp = 41 } var umin, umax, vmin, vmax float64 if o.PlotCf < 1 { o.PlotCf = 2 } if len(o.PlotUrange) == 0 { umin, umax = μ[0]-o.PlotCf*μ[0], μ[0]+o.PlotCf*μ[0] vmin, vmax = μ[1]-o.PlotCf*μ[1], μ[1]+o.PlotCf*μ[1] } else { chk.IntAssert(len(o.PlotUrange), 2) chk.IntAssert(len(o.PlotVrange), 2) umin, umax = o.PlotUrange[0], o.PlotUrange[1] vmin, vmax = o.PlotVrange[0], o.PlotVrange[1] } o.PlotU, o.PlotV = utl.MeshGrid2D(umin, umax, vmin, vmax, o.PlotNp, o.PlotNp) o.PlotZ = la.MatAlloc(o.PlotNp, o.PlotNp) plt.SetForEps(0.8, 300) for i := 0; i < o.PlotNp; i++ { for j := 0; j < o.PlotNp; j++ { o.xtmp[0] = o.PlotU[i][j] o.xtmp[1] = o.PlotV[i][j] o.PlotZ[i][j], err = o.gfcn(o.xtmp, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", x, err) } } } plt.Contour(o.PlotU, o.PlotV, o.PlotZ, "") plt.ContourSimple(o.PlotU, o.PlotV, o.PlotZ, true, 8, "levels=[0], colors=['yellow']") plt.PlotOne(x[0], x[1], "'ro', label='initial'") } // iterations to find β var dat VarData B := []float64{β} itB := 0 for itB = 0; itB < o.NmaxItB; itB++ { // message if verbose { gx, err := o.gfcn(x, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", x, err) } io.Pf("%s itB=%d β=%g g=%g\n", io.StrThinLine(60), itB, β, gx) } // plot if plot { plt.PlotOne(x[0], x[1], "'r.'") } // compute direction cosines itA := 0 for itA = 0; itA < o.NmaxItA; itA++ { // has lognormal random variable (lrv) if haslrv { // find equivalent normal mean and std deviation for lognormal variables for i := 0; i < nx; i++ { if o.lrv[i] { // set distribution dat.M, dat.S = o.μ[i], o.σ[i] lnd.Init(&dat) // update μ and σ fx := lnd.Pdf(x[i]) Φinvx := (math.Log(x[i]) - lnd.M) / lnd.S φx := math.Exp(-Φinvx*Φinvx/2.0) / math.Sqrt2 / math.SqrtPi σ[i] = φx / fx μ[i] = x[i] - Φinvx*σ[i] } } } // compute direction cosines err = o.hfcn(o.dgdx, x, args) if err != nil { chk.Panic("cannot compute hfcn(%v):\n%v", x, err) } den := 0.0 for i := 0; i < nx; i++ { den += math.Pow(o.dgdx[i]*σ[i], 2.0) } den = math.Sqrt(den) αerr := 0.0 // difference on α for i := 0; i < nx; i++ { αnew := o.dgdx[i] * σ[i] / den αerr += math.Pow(αnew-o.α[i], 2.0) o.α[i] = αnew } αerr = math.Sqrt(αerr) // message if verbose { io.Pf(" itA=%d\n", itA) io.Pf("%12s%12s%12s%12s\n", "x", "μ", "σ", "α") for i := 0; i < nx; i++ { io.Pf("%12.3f%12.3f%12.3f%12.3f\n", x[i], μ[i], σ[i], o.α[i]) } } // update x-star for i := 0; i < nx; i++ { x[i] = μ[i] - β*o.α[i]*σ[i] } // check convergence on α if itA > 1 && αerr < o.TolA { if verbose { io.Pfgrey(". . . converged on α with αerr=%g . . .\n", αerr) } break } } // failed to converge on α if itA == o.NmaxItA { chk.Panic("failed to convege on α") } // compute new β B[0] = β nls.Solve(B, o.NlsSilent) βerr := math.Abs(B[0] - β) β = B[0] if o.NlsCheckJ { nls.CheckJ(B, o.NlsCheckJtol, true, false) } // update x-star for i := 0; i < nx; i++ { x[i] = μ[i] - β*o.α[i]*σ[i] } // check convergence on β if βerr < o.TolB { if verbose { io.Pfgrey2(". . . converged on β with βerr=%g . . .\n", βerr) } break } } // failed to converge on β if itB == o.NmaxItB { chk.Panic("failed to converge on β") } // message if verbose { gx, err := o.gfcn(x, args) if err != nil { chk.Panic("cannot compute gfcn(%v):\n%v", x, err) } io.Pfgreen("x = %v\n", x) io.Pfgreen("g = %v\n", gx) io.PfGreen("β = %v\n", β) } // plot if plot { plt.Gll("$x_0$", "$x_1$", "") plt.Cross("") plt.SaveD("/tmp/gosl", "fig_form_"+o.PlotFnk+".eps") } return }
func Test_shape01(tst *testing.T) { //utl.Tsilent = false chk.PrintTitle("Test shape01") for name, shape := range factory { io.Pfyel("--------------------------------- %-6s---------------------------------\n", name) // check S tol := 1e-17 errS := 0.0 if name == "tri10" { tol = 1e-14 } for n := 0; n < shape.Nverts; n++ { rst := []float64{0, 0, 0} for i := 0; i < shape.Gndim; i++ { rst[i] = shape.NatCoords[i][n] } shape.Func(shape.S, shape.dSdR, rst[0], rst[1], rst[2], false) io.Pforan("S = %v\n", shape.S) for m := 0; m < shape.Nverts; m++ { if n == m { errS += math.Abs(shape.S[m] - 1.0) } else { errS += math.Abs(shape.S[m]) } } } if errS > tol { tst.Errorf("%s failed with err = %g\n", name, errS) return } // check dSdR tol = 1e-14 h := 1.0e-1 S_temp := make([]float64, shape.Nverts) if name == "lin5" || name == "tri15" || name == "lin4" || name == "tri10" || name == "qua12" || name == "qua16" { tol = 1.0e-10 } for n := 0; n < shape.Nverts; n++ { rst := []float64{0, 0, 0} for i := 0; i < shape.Gndim; i++ { rst[i] = shape.NatCoords[i][n] } // analytical shape.Func(shape.S, shape.dSdR, rst[0], rst[1], rst[2], true) // numerical for i := 0; i < shape.Gndim; i++ { dSndRi, _ := num.DerivCentral(func(x float64, args ...interface{}) (Sn float64) { rst_temp := []float64{rst[0], rst[1], rst[2]} rst_temp[i] = x shape.Func(S_temp, nil, rst_temp[0], rst_temp[1], rst_temp[2], false) Sn = S_temp[n] return }, rst[i], h) io.Pfgrey2(" dS%ddR%d @ [% 4.1f % 4.1f % 4.1f] = %v (num: %v)\n", n, i, rst[0], rst[1], rst[2], shape.dSdR[n][i], dSndRi) tol2 := tol if name == "tri15" && n == 11 && i == 1 { tol2 = 1.0e-9 } if math.Abs(shape.dSdR[n][i]-dSndRi) > tol2 { tst.Errorf("%s dS%ddR%d failed with err = %g\n", name, n, i, math.Abs(shape.dSdR[n][i]-dSndRi)) return } //chk.Scalar(tst, fmt.Sprintf("dS%ddR%d", n, i), tol2, dSdR[n][i], dSndRi) } } // check face vertices tol = 1e-17 errS = 0.0 if name == "tri10" { tol = 1e-14 } nfaces := len(shape.FaceLocalV) if nfaces == 0 { continue } for k := 0; k < nfaces; k++ { for n := range shape.FaceLocalV[k] { rst := []float64{0, 0, 0} for i := 0; i < shape.Gndim; i++ { rst[i] = shape.NatCoords[i][n] } shape.Func(shape.S, shape.dSdR, rst[0], rst[1], rst[2], false) io.Pforan("S = %v\n", shape.S) for m := range shape.FaceLocalV[k] { if n == m { errS += math.Abs(shape.S[m] - 1.0) } else { errS += math.Abs(shape.S[m]) } } } } io.Pforan("%g\n", errS) if errS > tol { tst.Errorf("%s failed with err = %g\n", name, errS) return } io.PfGreen("OK\n") } }
func Test_int01(tst *testing.T) { //verbose() chk.PrintTitle("int01. organise sequence of ints") io.Pf("\n") // initialise random numbers generator rnd.Init(0) // 0 => use current time as seed // parameters C := NewConfParams() C.Nova = 1 C.Noor = 0 C.Nisl = 1 C.Ninds = 20 C.RegTol = 0 C.NumInts = 20 //C.GAtype = "crowd" C.CrowdSize = 2 C.Tf = 50 C.Verbose = chk.Verbose C.CalcDerived() // mutation function C.Ops.MtInt = func(A []int, time int, ops *OpsData) { size := len(A) if !rnd.FlipCoin(ops.Pm) || size < 1 { return } pos := rnd.IntGetUniqueN(0, size, ops.Nchanges) for _, i := range pos { if A[i] == 1 { A[i] = 0 } if A[i] == 0 { A[i] = 1 } } } // generation function C.PopIntGen = func(id int, cc *ConfParams) Population { o := make([]*Individual, cc.Ninds) genes := make([]int, cc.NumInts) for i := 0; i < cc.Ninds; i++ { for j := 0; j < cc.NumInts; j++ { genes[j] = rand.Intn(2) } o[i] = NewIndividual(cc.Nova, cc.Noor, cc.Nbases, genes) } return o } // objective function C.OvaOor = func(ind *Individual, idIsland, time int, report *bytes.Buffer) { score := 0.0 count := 0 for _, val := range ind.Ints { if val == 0 && count%2 == 0 { score += 1.0 } if val == 1 && count%2 != 0 { score += 1.0 } count++ } ind.Ovas[0] = 1.0 / (1.0 + score) return } // run optimisation evo := NewEvolver(C) evo.Run() // results ideal := 1.0 / (1.0 + float64(C.NumInts)) io.PfGreen("\nBest = %v\nBestOV = %v (ideal=%v)\n", evo.Best.Ints, evo.Best.Ovas[0], ideal) }