func TestExampleModel(t *testing.T) { //badly conditioned Hessian leads to zig-zagging of the steepest descent //algorithm condNo := 100.0 optSol := mat.Vec{1, 2} A := mat.NewFromArray([]float64{condNo, 0, 0, 1}, true, 2, 2) b := mat.Vec{-2 * optSol[0] * condNo, -2 * optSol[1]} c := -0.5 * mat.Dot(b, optSol) //define objective function fun := opt.NewQuadratic(A, b, c) //set inital solution estimate sol := NewSolution(mat.NewVec(2)) //set termination parameters p := NewParams() p.IterMax = 5 //Use steepest descent solver to solve the model result := NewSteepestDescent().Solve(fun, sol, p, NewDisplay(1)) fmt.Println("x =", result.X) //should be [1,2], but because of the bad conditioning we made little //progress in the second dimension //Use a BFGS solver to refine the result: result = NewLBFGS().Solve(fun, result.Solution, p, NewDisplay(1)) fmt.Println("x =", result.X) }
func TestQuadratic(t *testing.T) { mat.Register(cops) n := 10 xStar := mat.NewVec(n) xStar.AddSc(1) A := mat.RandN(n) At := A.TrView() AtA := mat.New(n) AtA.Mul(At, A) bTmp := mat.NewVec(n) bTmp.Apply(A, xStar) b := mat.NewVec(n) b.Apply(At, bTmp) b.Scal(-2) c := bTmp.Nrm2Sq() //Define input arguments obj := opt.NewQuadratic(AtA, b, c) p := NewParams() sol := NewSolution(mat.NewVec(n)) //Steepest descent with armijo stDesc := NewSteepestDescent() res1 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res1.ObjX, res1.FunEvals, res1.GradEvals, res1.Status) //Steepest descent with Quadratic stDesc.LineSearch = uni.DerivWrapper{uni.NewQuadratic()} res2 := stDesc.Solve(obj, sol, p, NewDisplay(100)) t.Log(res2.ObjX, res2.FunEvals, res2.GradEvals, res2.Status) //LBFGS with armijo lbfgs := NewLBFGS() res3 := lbfgs.Solve(obj, sol, p, NewDisplay(10)) t.Log(res3.ObjX, res3.FunEvals, res3.GradEvals, res3.Status) //constrained problems (constraints described as projection) projGrad := NewProjGrad() res4 := projGrad.Solve(obj, opt.RealPlus{}, sol, p, NewDisplay(100)) t.Log(res4.ObjX, res4.FunEvals, res4.GradEvals, res4.Status) if math.Abs(res1.ObjX) > 0.01 { t.Fail() } if math.Abs(res2.ObjX) > 0.01 { t.Fail() } if math.Abs(res3.ObjX) > 0.01 { t.Fail() } if math.Abs(res4.ObjX) > 0.01 { t.Fail() } }