// SecretDecodeFrom provides a generic implementation of Secret.DecodeFrom, // based on Secret.Decode, or Secret.Pick if r is a Cipher or cipher.Stream. // The returned byte-count is valid only when decoding from a normal Reader, // not when picking from a pseudorandom source. func SecretUnmarshalFrom(s abstract.Secret, r io.Reader) (int, error) { if strm, ok := r.(cipher.Stream); ok { s.Pick(strm) return -1, nil // no byte-count when picking randomly } buf := make([]byte, s.MarshalSize()) n, err := io.ReadFull(r, buf) if err != nil { return n, err } return n, s.UnmarshalBinary(buf) }
// ConstructTree does a depth-first construction of the tree specified in the // config file. ConstructTree must be called AFTER populating the HostConfig with // ALL the possible hosts. func ConstructTree( n *Node, hc *HostConfig, parent string, suite abstract.Suite, rand cipher.Stream, hosts map[string]coconet.Host, nameToAddr map[string]string, opts ConfigOptions) (int, error) { // passes up its X_hat, and/or an error // get the name associated with this address name, ok := nameToAddr[n.Name] if !ok { fmt.Println("unknown name in address book:", n.Name) return 0, errors.New("unknown name in address book") } // generate indicates whether we should generate the signing // node for this hostname generate := opts.Host == "" || opts.Host == name // check to make sure the this hostname is in the tree // it can be backed by a nil pointer h, ok := hosts[name] if !ok { fmt.Println("unknown host in tree:", name) return 0, errors.New("unknown host in tree") } var prikey abstract.Secret var pubkey abstract.Point var sn *sign.Node // if the JSON holds the fields field is set load from there if len(n.PubKey) != 0 { // log.Println("decoding point") encoded, err := hex.DecodeString(string(n.PubKey)) if err != nil { log.Print("failed to decode hex from encoded") return 0, err } pubkey = suite.Point() err = pubkey.UnmarshalBinary(encoded) if err != nil { log.Print("failed to decode point from hex") return 0, err } // log.Println("decoding point") encoded, err = hex.DecodeString(string(n.PriKey)) if err != nil { log.Print("failed to decode hex from encoded") return 0, err } prikey = suite.Secret() err = prikey.UnmarshalBinary(encoded) if err != nil { log.Print("failed to decode point from hex") return 0, err } } if generate { if prikey != nil { // if we have been given a private key load that aux := sign.NewKeyedNode(h, suite, prikey) aux.GenSetPool() hc.SNodes = append(hc.SNodes, aux) h.SetPubKey(pubkey) } else { // otherwise generate a random new one sn := sign.NewNode(h, suite, rand) sn.GenSetPool() hc.SNodes = append(hc.SNodes, sn) h.SetPubKey(sn.PubKey) } sn = hc.SNodes[len(hc.SNodes)-1] hc.Hosts[name] = sn if prikey == nil { prikey = sn.PrivKey pubkey = sn.PubKey } // log.Println("pubkey:", sn.PubKey) // log.Println("given: ", pubkey) } // if the parent of this call is empty then this must be the root node if parent != "" && generate { h.AddParent(0, parent) } // log.Println("name: ", n.Name) // log.Println("prikey: ", prikey) // log.Println("pubkey: ", pubkey) height := 0 for _, c := range n.Children { // connect this node to its children cname, ok := nameToAddr[c.Name] if !ok { fmt.Println("unknown name in address book:", n.Name) return 0, errors.New("unknown name in address book") } if generate { h.AddChildren(0, cname) } // recursively construct the children // log.Print("ConstructTree:", h, suite, rand, hosts, nameToAddr, opts) h, err := ConstructTree(c, hc, name, suite, rand, hosts, nameToAddr, opts) if err != nil { return 0, err } height = max(h+1, height) // if generating all csn will be availible } if generate { sn.Height = height } // log.Println("name: ", n.Name) // log.Println("final x_hat: ", x_hat) // log.Println("final pubkey: ", pubkey) return height, nil }