func S1(r *rng.GslRng, xp interface{}, stepSize float64) { ptr := xp.(*float64) oldX := *ptr u := rng.Uniform(r) newX := u*2*stepSize - stepSize + oldX *ptr = newX }
func TestRng(t *testing.T) { var n int = 10 rng.EnvSetup() T := rng.DefaultRngType() r := rng.RngAlloc(T) for i := 0; i < n; i++ { u := rng.Uniform(r) fmt.Printf("%.5f\n", u) } fmt.Println() }
func TestHistogram(t *testing.T) { h := histogram.Histogram2dAlloc(10, 10) histogram.Histogram2dSetRangesUniform(h, 0.0, 1.0, 0.0, 1.0) histogram.Histogram2dAccumulate(h, 0.3, 0.3, 1) histogram.Histogram2dAccumulate(h, 0.8, 0.1, 5) histogram.Histogram2dAccumulate(h, 0.7, 0.9, 0.5) rng.EnvSetup() T := rng.DefaultRngType() r := rng.RngAlloc(T) hDim := h.Dim() p := histogram.Histogram2dPdfAlloc(hDim[0], hDim[1]) histogram.Histogram2dPdfInit(p, h) for i := 0; i < 1000; i++ { u := rng.Uniform(r) v := rng.Uniform(r) _, x, y := histogram.Histogram2dPdfSample(p, u, v) fmt.Printf("%g %g\n", x, y) } }
func TestSort(t *testing.T) { var n int = 100000 var k int = 5 x := make([]float64, n) small := make([]float64, k) rng.EnvSetup() T := rng.DefaultRngType() r := rng.RngAlloc(T) for i := 0; i < n; i++ { x[i] = rng.Uniform(r) } sort.SortSmallest(small, k, x, 1, n) fmt.Printf("%d smallest values from %d\n", k, n) for i := 0; i < k; i++ { fmt.Printf("%d: %.18f\n", i, small[i]) } }
func TestSortVectorIndex(t *testing.T) { var n int = 10000 var k int = 5 v := vector.VectorAlloc(n) p := permutation.PermutationAlloc(n) rng.EnvSetup() T := rng.DefaultRngType() r := rng.RngAlloc(T) for i := 0; i < n; i++ { vector.Set(v, i, rng.Uniform(r)) } sort.SortVectorIndex(p, v) pData := p.Slice_().([]int) for i := 0; i < k; i++ { vpi := vector.Get(v, pData[i]) fmt.Printf("order = %d, value = %g\n", i, vpi) } }
func TestSiman(t *testing.T) { params := &siman.GslSimanParams{ NumTries: N_TRIES, ItersFixed: ITERS_FIXED_T, StepSize: STEP_SIZE, K: K, TInitial: T_INITIAL, Mu: MU_T, TMin: T_MIN, } siman.InitializeGslSimanParams(params) var xInitial float64 = 15.5 rng.EnvSetup() T := rng.DefaultRngType() r := rng.RngAlloc(T) fmt.Println(rng.Uniform(r)) siman.Solve(r, &xInitial, E1, S1, M1, P1, nil, nil, nil, params) }
func TestRobust(t *testing.T) { var p int = 2 // linear fit var a float64 = 1.45 // data slope var b float64 = 3.88 // data intercept var n int = 20 X := matrix.MatrixAlloc(n, p) x := vector.VectorAlloc(n) y := vector.VectorAlloc(n) c := vector.VectorAlloc(p) cOls := vector.VectorAlloc(p) cov := matrix.MatrixAlloc(p, p) r := rng.RngAlloc(rng.DefaultRngType()) // generate linear dataset for i := 0; i < n-3; i++ { dx := 10.0 / (float64(n) - 1.0) ei := rng.Uniform(r) xi := -5.0 + float64(i)*dx yi := a*xi + b vector.Set(x, i, xi) vector.Set(y, i, yi+ei) } // add a few outliers vector.Set(x, n-3, 4.7) vector.Set(y, n-3, -8.3) vector.Set(x, n-2, 3.5) vector.Set(y, n-2, -6.7) vector.Set(x, n-1, 4.1) vector.Set(y, n-1, -6.0) // construct design matrix X for linear fit for i := 0; i < n; i++ { xi := vector.Get(x, i) matrix.Set(X, i, 0, 1.0) matrix.Set(X, i, 1, xi) } // perform robust and OLS fit DoFit(multifit.GSL_MULTIFIT_ROBUST_OLS, X, y, cOls, cov) DoFit(multifit.GSL_MULTIFIT_ROBUST_BISQUARE, X, y, c, cov) // output data and model for i := 0; i < n; i++ { xi := vector.Get(x, i) yi := vector.Get(y, i) v := matrix.Row(X, i).Vector() _, yRob, _ := multifit.RobustEst(v, c, cov) _, yOls, _ := multifit.RobustEst(v, cOls, cov) fmt.Printf("%g %g %g %g\n", xi, yi, yRob, yOls) } fmt.Printf("# best fit: Y = %g + %g X\n", vector.Get(c, 0), vector.Get(c, 1)) fmt.Printf("# covariance matrix:\n") fmt.Printf("# [ %+.5e, %+.5e\n", matrix.Get(cov, 0, 0), matrix.Get(cov, 0, 1)) fmt.Printf("# %+.5e, %+.5e\n", matrix.Get(cov, 1, 0), matrix.Get(cov, 1, 1)) }