예제 #1
0
// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
	// Create a test account and fund it
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()

	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000))

	// Add some pending and some queued transactions
	var (
		tx0  = transaction(0, big.NewInt(100), key)
		tx1  = transaction(1, big.NewInt(200), key)
		tx10 = transaction(10, big.NewInt(100), key)
		tx11 = transaction(11, big.NewInt(200), key)
	)
	pool.promoteTx(account, tx0.Hash(), tx0)
	pool.promoteTx(account, tx1.Hash(), tx1)
	pool.enqueueTx(tx10.Hash(), tx10)
	pool.enqueueTx(tx11.Hash(), tx11)

	// Check that pre and post validations leave the pool as is
	if pool.pending[account].Len() != 2 {
		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
	}
	if pool.queue[account].Len() != 2 {
		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
	}
	if len(pool.all) != 4 {
		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
	}
	pool.resetState()
	if pool.pending[account].Len() != 2 {
		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
	}
	if pool.queue[account].Len() != 2 {
		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
	}
	if len(pool.all) != 4 {
		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
	}
	// Reduce the balance of the account, and check that invalidated transactions are dropped
	state.AddBalance(account, big.NewInt(-750))
	pool.resetState()

	if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
		t.Errorf("funded pending transaction missing: %v", tx0)
	}
	if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
		t.Errorf("out-of-fund pending transaction present: %v", tx1)
	}
	if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
		t.Errorf("funded queued transaction missing: %v", tx10)
	}
	if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
		t.Errorf("out-of-fund queued transaction present: %v", tx11)
	}
	if len(pool.all) != 2 {
		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2)
	}
}
// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueLimiting(t *testing.T) {
	// Create a test account and fund it
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()

	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000000))

	// Keep queuing up transactions and make sure all above a limit are dropped
	for i := uint64(1); i <= maxQueued+5; i++ {
		if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
		}
		if len(pool.pending) != 0 {
			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
		}
		if i <= maxQueued {
			if len(pool.queue[account]) != int(i) {
				t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), i)
			}
		} else {
			if len(pool.queue[account]) != maxQueued {
				t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, len(pool.queue[account]), maxQueued)
			}
		}
	}
}
예제 #3
0
// Tests that if an account remains idle for a prolonged amount of time, any
// non-executable transactions queued up are dropped to prevent wasting resources
// on shuffling them around.
func TestTransactionQueueTimeLimiting(t *testing.T) {
	// Reduce the queue limits to shorten test time
	defer func(old time.Duration) { maxQueuedLifetime = old }(maxQueuedLifetime)
	defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
	maxQueuedLifetime = time.Second
	evictionInterval = time.Second

	// Create a test account and fund it
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()

	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000000))

	// Queue up a batch of transactions
	for i := uint64(1); i <= maxQueuedPerAccount; i++ {
		if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
		}
	}
	// Wait until at least two expiration cycles hit and make sure the transactions are gone
	time.Sleep(2 * evictionInterval)
	if len(pool.queue) > 0 {
		t.Fatalf("old transactions remained after eviction")
	}
}
func benchmarkCheckQueue(b *testing.B, size int) {
	// Add a batch of transactions to a pool one by one
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()
	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000000))

	for i := 0; i < size; i++ {
		tx := transaction(uint64(1+i), big.NewInt(100000), key)
		pool.queueTx(tx.Hash(), tx)
	}
	// Benchmark the speed of pool validation
	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		pool.checkQueue()
	}
}
예제 #5
0
// Benchmarks the speed of iterative transaction insertion.
func BenchmarkPoolInsert(b *testing.B) {
	// Generate a batch of transactions to enqueue into the pool
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()
	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000000))

	txs := make(types.Transactions, b.N)
	for i := 0; i < b.N; i++ {
		txs[i] = transaction(uint64(i), big.NewInt(100000), key)
	}
	// Benchmark importing the transactions into the queue
	b.ResetTimer()
	for _, tx := range txs {
		pool.Add(tx)
	}
}
예제 #6
0
// Tests that if the transaction count belonging to multiple accounts go above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueGlobalLimiting(t *testing.T) {
	// Reduce the queue limits to shorten test time
	defer func(old uint64) { maxQueuedInTotal = old }(maxQueuedInTotal)
	maxQueuedInTotal = maxQueuedPerAccount * 3

	// Create the pool to test the limit enforcement with
	db, _ := ethdb.NewMemDatabase()
	statedb, _ := state.New(common.Hash{}, db)

	pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
	pool.resetState()

	// Create a number of test accounts and fund them
	state, _ := pool.currentState()

	keys := make([]*ecdsa.PrivateKey, 5)
	for i := 0; i < len(keys); i++ {
		keys[i], _ = crypto.GenerateKey()
		state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
	}
	// Generate and queue a batch of transactions
	nonces := make(map[common.Address]uint64)

	txs := make(types.Transactions, 0, 3*maxQueuedInTotal)
	for len(txs) < cap(txs) {
		key := keys[rand.Intn(len(keys))]
		addr := crypto.PubkeyToAddress(key.PublicKey)

		txs = append(txs, transaction(nonces[addr]+1, big.NewInt(100000), key))
		nonces[addr]++
	}
	// Import the batch and verify that limits have been enforced
	pool.AddBatch(txs)

	queued := 0
	for addr, list := range pool.queue {
		if list.Len() > int(maxQueuedPerAccount) {
			t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), maxQueuedPerAccount)
		}
		queued += list.Len()
	}
	if queued > int(maxQueuedInTotal) {
		t.Fatalf("total transactions overflow allowance: %d > %d", queued, maxQueuedInTotal)
	}
}
예제 #7
0
func benchmarkPoolBatchInsert(b *testing.B, size int) {
	// Generate a batch of transactions to enqueue into the pool
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()
	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000000))

	batches := make([]types.Transactions, b.N)
	for i := 0; i < b.N; i++ {
		batches[i] = make(types.Transactions, size)
		for j := 0; j < size; j++ {
			batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key)
		}
	}
	// Benchmark importing the transactions into the queue
	b.ResetTimer()
	for _, batch := range batches {
		pool.AddBatch(batch)
	}
}
예제 #8
0
// Tests that even if the transaction count belonging to a single account goes
// above some threshold, as long as the transactions are executable, they are
// accepted.
func TestTransactionPendingLimiting(t *testing.T) {
	// Create a test account and fund it
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()

	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000000))

	// Keep queuing up transactions and make sure all above a limit are dropped
	for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
		if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
		}
		if pool.pending[account].Len() != int(i)+1 {
			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
		}
		if len(pool.queue) != 0 {
			t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
		}
	}
	if len(pool.all) != int(maxQueuedPerAccount+5) {
		t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount+5)
	}
}
// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
// postponed back into the future queue to prevent broadcating them.
func TestTransactionPostponing(t *testing.T) {
	// Create a test account and fund it
	pool, key := setupTxPool()
	account, _ := transaction(0, big.NewInt(0), key).From()

	state, _ := pool.currentState()
	state.AddBalance(account, big.NewInt(1000))

	// Add a batch consecutive pending transactions for validation
	txns := []*types.Transaction{}
	for i := 0; i < 100; i++ {
		var tx *types.Transaction
		if i%2 == 0 {
			tx = transaction(uint64(i), big.NewInt(100), key)
		} else {
			tx = transaction(uint64(i), big.NewInt(500), key)
		}
		pool.addTx(tx.Hash(), account, tx)
		txns = append(txns, tx)
	}
	// Check that pre and post validations leave the pool as is
	if len(pool.pending) != len(txns) {
		t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns))
	}
	if len(pool.queue[account]) != 0 {
		t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0)
	}
	pool.resetState()
	if len(pool.pending) != len(txns) {
		t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns))
	}
	if len(pool.queue[account]) != 0 {
		t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0)
	}
	// Reduce the balance of the account, and check that transactions are reorganized
	state.AddBalance(account, big.NewInt(-750))
	pool.resetState()

	if _, ok := pool.pending[txns[0].Hash()]; !ok {
		t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
	}
	if _, ok := pool.queue[account][txns[0].Hash()]; ok {
		t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
	}
	for i, tx := range txns[1:] {
		if i%2 == 1 {
			if _, ok := pool.pending[tx.Hash()]; ok {
				t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
			}
			if _, ok := pool.queue[account][tx.Hash()]; !ok {
				t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
			}
		} else {
			if _, ok := pool.pending[tx.Hash()]; ok {
				t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
			}
			if _, ok := pool.queue[account][tx.Hash()]; ok {
				t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
			}
		}
	}
}